IMPLEMENTASI METODE STACKING MENGGUNAKAN RANDOM FOREST DAN XGBOOST UNTUK MENGKLASIFIKASI RISIKO SERANGAN JANTUNG

RAHMAN, RAVI ADITYA (2025) IMPLEMENTASI METODE STACKING MENGGUNAKAN RANDOM FOREST DAN XGBOOST UNTUK MENGKLASIFIKASI RISIKO SERANGAN JANTUNG. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVER.pdf

Download (524kB) | Preview
[img] Text (BAB I)
02 BAB 1.pdf
Restricted to Registered users only

Download (101kB)
[img] Text (BAB II)
03 BAB 2.pdf
Restricted to Registered users only

Download (166kB)
[img] Text (BAB III)
04 BAB 3.pdf
Restricted to Repository staff only

Download (127kB)
[img] Text (BAB IV)
05 BAB 4.pdf
Restricted to Registered users only

Download (213kB)
[img] Text (BAB V)
06 BAB 5.pdf
Restricted to Registered users only

Download (30kB)
[img] Text (DAFTAR PUSTAKA)
07 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (101kB)
[img] Text (LAMPIRAN)
08 LAMPIRAN.pdf
Restricted to Registered users only

Download (1MB)

Abstract

Heart attack disease is one of the leading causes of death in the world and is a significant burden on the health system in Indonesia. Accurate early detection is essential in preventing and managing the risk of heart attack. This study aims to develop a heart attack risk classification model by applying the ensemble learning method using the stacking approach, which combines two machine learning algorithms, namely the Random Forest and XGBoost algorithms. The dataset used is secondary data entitled "Heart Attack Prediction in Indonesia" downloaded from Kaggle, with a total of 158,355 individual data. The research process includes data preprocessing stages, such as categorical variable numbering, normalization using MinMaxScaler, and class balancing. The Random Forest and XGBoost models were each evaluated individually before being combined using the stacking technique with XGBoost as a meta-learner. Performance evaluation was carried out using cross validation and metrics of accuracy, precision, recall, and F1-score. The results showed that the stacking model produced the highest accuracy of 85%, better than the Random Forest (76%) and XGBoost (74%) models. Feature importance analysis shows that features such as history of heart disease, hypertension, and cholesterol levels have significant contributions in the classification process. The results of this study prove that the application of the stacking method can improve the performance of machine learning algorithm models in the classification of heart attack disease. Keywords: Heart Attack, Classification, Stacking, Random Forest, XGBoost. Penyakit serangan jantung merupakan salah satu penyebab kematian utama di dunia dan menjadi beban signifikan bagi sistem kesehatan di Indonesia. Deteksi dini yang akurat sangat penting dalam upaya pencegahan dan pengelolaan risiko serangan jantung. Penelitian ini bertujuan untuk mengembangkan model klasifikasi risiko serangan jantung dengan menerapkan metode ensemble learning menggunakan pendekatan stacking, yang menggabungkan dua algoritma machine learning yaitu algoritma Random Forest dan XGBoost. Dataset yang digunakan adalah data sekunder berjudul “Heart Attack Prediction in Indonesia” yang diunduh dari Kaggle, dengan total 158.355 data individu. Proses penelitian mencakup tahapan data preprocessing, seperti penomoran variabel kategorikal, normalisasi menggunakan MinMaxScaler, dan penyeimbangan kelas. Model Random Forest dan XGBoost masing-masing dievaluasi secara individual sebelum digabungkan menggunakan teknik stacking dengan XGBoost sebagai meta-learner. Evaluasi kinerja dilakukan menggunakan cross validation dan metrik akurasi, presisi, recall, serta F1-score. Hasil menunjukkan bahwa model stacking menghasilkan akurasi tertinggi sebesar 85%, lebih baik dibandingkan model Random Forest (76%) dan XGBoost (74%). Analisis feature importance menunjukkan bahwa fitur-fitur seperti riwayat penyakit jantung, hipertensi, dan kadar kolesterol memiliki kontribusi signifikan dalam proses klasifikasi. Hasil penelitian ini membuktikan bahwa penerapan metode stacking dapat memberikan peningkatan kinerja model algoritma machine learning dalam klasifikasi penyakit serangan jantung. Kata kunci: Serangan Jantung, Klasifikasi, Stacking, Random Forest, XGBoost.

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 25 116
NIM/NIDN Creators: 41521010052
Uncontrolled Keywords: Serangan Jantung, Klasifikasi, Stacking, Random Forest, XGBoost.
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.3 Artificial Intelligence/Kecerdasan Buatan > 006.31 Machine Learning/Pembelajaran Mesin
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 020 Library and Information Sciences/Perpustakaan dan Ilmu Informasi > 025 Operations, Archives, Information Centers/Operasional Perpustakaan, Arsip dan Pusat Informasi, Pelayanan dan Pengelolaan Perpustakaan > 025.4 Subject Analysis and Control/Subjek Analisis dan Kontrol Perpustakaan > 025.46 Classification of Specific Subject/Klasifikasi Khusus
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 510 Mathematics/Matematika > 518 Numerical Analysis/Analisis Numerik, Analisa Numerik > 518.1 Algorithms/Algoritma
600 Technology/Teknologi > 610 Medical, Medicine, and Health Sciences/Ilmu Kedokteran, Ilmu Pengobatan dan Ilmu Kesehatan > 616 Diseases/Penyakit > 616.1 Diseases of Cardiovascular System/Penyakit pada Sistem Kardiovaskular
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: khalimah
Date Deposited: 05 Aug 2025 06:50
Last Modified: 05 Aug 2025 06:50
URI: http://repository.mercubuana.ac.id/id/eprint/96574

Actions (login required)

View Item View Item