PREDIKSI CURAH HUJAN DI KOTA TANGERANG MENGGUNAKAN RECURRENT NEURAL NETWORK (RNN) DAN LONG SHORT-TERM MEMORY (LSTM)

RUBIAN, ALFI ALBY (2025) PREDIKSI CURAH HUJAN DI KOTA TANGERANG MENGGUNAKAN RECURRENT NEURAL NETWORK (RNN) DAN LONG SHORT-TERM MEMORY (LSTM). S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVER.pdf

Download (766kB) | Preview
[img] Text (BAB I)
02 BAB 1.pdf
Restricted to Registered users only

Download (92kB)
[img] Text (BAB II)
03 BAB 2.pdf
Restricted to Registered users only

Download (293kB)
[img] Text (BAB III)
04 BAB 3.pdf
Restricted to Registered users only

Download (343kB)
[img] Text (BAB IV)
05 BAB 4.pdf
Restricted to Registered users only

Download (478kB)
[img] Text (BAB V)
06 BAB 5.pdf
Restricted to Registered users only

Download (35kB)
[img] Text (DAFTAR PUSTAKA)
07 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (88kB)
[img] Text (LAMPIRAN)
08 LAMPIRAN.pdf
Restricted to Registered users only

Download (871kB)

Abstract

A This research is motivated by rain, a natural phenomenon characterized by water droplets falling from the atmosphere to the Earth's surface. Rainfall refers to the amount of water that falls on a flat surface during a specific period, measured in height units (mm) over a horizontal surface. The volume of rainfall is quantified as the amount of water that falls on a flat surface over a given period, whether daily, weekly, monthly, or annually. High-intensity rainfall, often referred to as extreme rainfall, can lead to natural disasters. Rainfall prediction is highly beneficial for farmers, allowing them to plan planting and harvesting times more efficiently based on rainfall forecasts. This helps improve agricultural yields and optimize resource usage. It also aids in irrigation optimization; if sufficient rain is expected, farmers and water resource managers can reduce irrigation usage and conserve water. Furthermore, understanding expected rainfall patterns helps with flood prevention. Preventive measures, such as water management planning, dam construction, or drainage system improvements, can be taken to mitigate flood risks. The study began with data collection, using rainfall data obtained from the BMKG (Meteorology, Climatology, and Geophysics Agency) website for the city of Tangerang. The research involves predicting rainfall using Recurrent Neural Network (RNN) and Long ShortTerm Memory (LSTM) algorithms. In this context, the author conducted a comparative analysis of the LSTM and RNN algorithms, as well as their performance in predicting weather in Tangerang. Key words: Rainfall prediction, extreme rain, LSTM algorithm, RNN algorithm, BMKG rainfall data. Penelitian ini dilatarbelakangi oleh hujan, yang merupakan salah satu fenomena alam yang menunjukkan jatuhnya titik-titik air dari atmosfer ke permukaan bumi. Curah hujan adalah jumlah air yang jatuh di tanah datar selama periode tertentu, yang diukur dengan satuan tinggi (mm) di atas permukaan horizontal. Jumlah curah hujan diukur sebagai volume air yang jatuh di atas permukaan bidang datar dalam periode waktu tertentu, yaitu harian, mingguan, bulanan, atau tahunan. Intensitas curah hujan yang tinggi, yang sering disebut hujan ekstrem, dapat mengakibatkan terjadinya bencana alam. Prediksi curah hujan ini akan sangat berguna bagi petani agar dapat merencanakan waktu tanam dan panen dengan lebih efisien berdasarkan prediksi curah hujan. Hal ini membantu meningkatkan hasil pertanian dan mengoptimalkan penggunaan sumber daya. Selain itu, prediksi curah hujan dapat membantu mengoptimalkan penggunaan irigasi. Jika hujan yang cukup diharapkan, petani dan pengelola sumber daya air dapat mengurangi penggunaan irigasi dan menghemat air. Prediksi ini juga berperan dalam pencegahan banjir. Dengan memahami pola curah hujan yang diharapkan, langkah-langkah pencegahan dapat diambil untuk mengurangi risiko banjir, misalnya melalui penataan tata air, konstruksi bendungan, atau peningkatan sistem drainase. Pengujian dimulai dari tahap pengumpulan data berupa data curah hujan yang diambil dari situs web BMKG Kota Tangerang. Dalam penelitian ini, prediksi curah hujan dilakukan menggunakan algoritma Recurrent Neural Network (RNN) dan Long Short-Term Memory (LSTM). Penulis melakukan analisis perbandingan antara algoritma Long Short-Term Memory (LSTM) dan Recurrent Neural Network (RNN), serta mengukur kinerja kedua algoritma dalam memprediksi curah hujan di Kota Tangerang. Kata kunci: Prediksi curah hujan, hujan ekstrem, algoritma LSTM, algoritma RNN, data curah hujan BMKG.

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 25 060
NIM/NIDN Creators: 41519010083
Uncontrolled Keywords: Prediksi curah hujan, hujan ekstrem, algoritma LSTM, algoritma RNN, data curah hujan BMKG.
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika > 004.5 Storage/Penyimpanan > 004.53 Internal Storage (Main Memory)/Penyimpanan Internal I(Memory Utama)
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.3 Artificial Intelligence/Kecerdasan Buatan > 006.32 Neural Nets (Neural Network)/Jaringan Saraf Buatan
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: khalimah
Date Deposited: 14 Mar 2025 04:53
Last Modified: 14 Mar 2025 04:53
URI: http://repository.mercubuana.ac.id/id/eprint/94891

Actions (login required)

View Item View Item