IMPLEMENTASI HYBRID GWO-SCA DENGAN SUPPORT VECTOR MACHINE DAN K-NEAREST NEIGHBOR UNTUK MENGKLASIFIKASI INDEKS POLUSI UDARA PROVINSI DKI JAKARTA

TRIAGANTARA, RAGA (2025) IMPLEMENTASI HYBRID GWO-SCA DENGAN SUPPORT VECTOR MACHINE DAN K-NEAREST NEIGHBOR UNTUK MENGKLASIFIKASI INDEKS POLUSI UDARA PROVINSI DKI JAKARTA. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVER.pdf

Download (563kB) | Preview
[img] Text (BAB I)
02 BAB 1.pdf
Restricted to Registered users only

Download (88kB)
[img] Text (BAB II)
03 BAB 2.pdf
Restricted to Registered users only

Download (251kB)
[img] Text (BAB III)
04 BAB 3.pdf
Restricted to Registered users only

Download (84kB)
[img] Text (BAB IV)
05 BAB 4.pdf
Restricted to Registered users only

Download (532kB)
[img] Text (BAB V)
06 BAB 5.pdf
Restricted to Registered users only

Download (77kB)
[img] Text (DAFTAR PUSTAKA)
07 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (146kB)
[img] Text (LAMPIRAN)
08 LAMPIRAN.pdf
Restricted to Registered users only

Download (1MB)

Abstract

Air pollution is a significant environmental and health challenge in the DKI Jakarta Province, Indonesia. Accurate classification of the Air Quality Index (AQI) is crucial for effective monitoring and policy formulation. This study implements a combination of the Hybrid Grey Wolf Optimizer-Sine Cosine Algorithm (GWOSCA) integrated with Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) to classify AQI data in the DKI Jakarta Province. The study evaluates four models—HGWOSCA+SVM, HGWOSCA+KNN, SVM, and KNN—based on performance metrics such as accuracy, precision, recall, and F1-score. The results show that the HGWOSCA+KNN model achieves the highest performance, with an accuracy of 98.774%, precision of 98.774%, recall of 98.775%, and an F1-score of 98.774%. The HGWOSCA+SVM model also improves, achieving an accuracy of 98.36% compared to 94.97% for the non-hybrid SVM model. Additionally, while SVM outperforms KNN in both hybrid and non-hybrid schemes, the GWO-SCA combination significantly enhances the accuracy and reliability of both models. These findings confirm the effectiveness of hybrid optimization techniques in improving machine learning models for environmental data classification. Kata kunci: Hybrid GWO-SCA, SVM, KNN, Optimization , Classification, Air Pollution Index Pencemaran udara merupakan tantangan lingkungan dan kesehatan yang signifikan di Provinsi DKI Jakarta, Indonesia. Klasifikasi yang akurat terhadap Indeks Kualitas Udara (AQI) sangat penting untuk pemantauan yang efektif dan perumusan kebijakan. Penelitian ini menerapkan kombinasi algoritma Hybrid Grey Wolf Optimizer-Sine Cosine Algorithm (GWO-SCA) yang terintegrasi dengan Support Vector Machine (SVM) dan K-Nearest Neighbor (KNN) untuk mengklasifikasikan data AQI di Provinsi DKI Jakarta. Penelitian ini mengevaluasi empat model, yaitu HGWOSCA+SVM, HGWOSCA+KNN, SVM, dan KNN, berdasarkan metrik performa seperti akurasi, presisi, recall, dan F1-score. Hasil penelitian menunjukkan bahwa model HGWOSCA+KNN mencapai performa tertinggi dengan akurasi sebesar 98,774%, presisi 98,774%, recall 98,775%, dan F1-score 98,774%. Model HGWOSCA+SVM juga meningkatk dengan mencapai akurasi sebesar 98.36%, dibandingkan dengan 94.97% pada model SVM tanpa hybrid. Selain itu, meskipun SVM mengungguli KNN baik dalam skema hybrid maupun tanpa hybrid, kombinasi GWO-SCA secara signifikan meningkatkan akurasi dan keandalan klasifikasi kedua model tersebut. Temuan ini menegaskan efektivitas teknik optimasi hybrid dalam meningkatkan model pembelajaran mesin untuk klasifikasi data lingkungan. Kata kunci: Hybrid GWO-SCA, SVM, KNN, Optimisasi, Klasifikasi, Indeks Polusi Udara.

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 25 055
NIM/NIDN Creators: 41521010129
Uncontrolled Keywords: Hybrid GWO-SCA, SVM, KNN, Optimisasi, Klasifikasi, Indeks Polusi Udara
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 005 Computer Programmming, Programs, Data/Pemprograman Komputer, Program, Data > 005.3 Programs/Program > 005.39 Programs for Hybrid and Analog Computers/Program untuk Komputer Hibrid dan Analog
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: khalimah
Date Deposited: 28 Feb 2025 04:19
Last Modified: 28 Feb 2025 04:19
URI: http://repository.mercubuana.ac.id/id/eprint/94511

Actions (login required)

View Item View Item