ANALISIS SENTIMEN RESPONS EMOSIONAL MASYARAKAT TERHADAP PERINGATAN DARURAT MENGGUNAKAN NAIVE BAYES CLASSIFIER

GRACESILIA, ANGELY ARTINI (2025) ANALISIS SENTIMEN RESPONS EMOSIONAL MASYARAKAT TERHADAP PERINGATAN DARURAT MENGGUNAKAN NAIVE BAYES CLASSIFIER. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVER.pdf

Download (491kB) | Preview
[img] Text (BAB I)
02 BAB 1.pdf
Restricted to Registered users only

Download (111kB)
[img] Text (BAB II)
03 BAB 2.pdf
Restricted to Registered users only

Download (512kB)
[img] Text (BAB III)
04 BAB 3.pdf
Restricted to Registered users only

Download (270kB)
[img] Text (BAB IV)
05 BAB 4.pdf
Restricted to Registered users only

Download (1MB)
[img] Text (BAB V)
06 BAB 5.pdf
Restricted to Registered users only

Download (31kB)
[img] Text (DAFTAR PUSTAKA)
07 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (170kB)
[img] Text (LAMPIRAN)
08 LAMPIRAN.pdf
Restricted to Registered users only

Download (653kB)

Abstract

This study analyzes the emotional responses of the public to emergency alerts on social media using the Naive Bayes Classifier algorithm. A total of 2,448 Twitter data samples were collected between August 16 and December 1, 2024, using keywords such as "Emergency Alert" and "Reject MK Decision." The analysis included data crawling, text preprocessing, sentiment labeling (positive, negative, neutral), and classification using Gaussian, Multinomial, and Bernoulli Naive Bayes algorithms. The results show sentiment distribution as follows 38.90% negative, 35.67% neutral, and 25.44% positive. The dominant emotions identified were anger (22.23%), followed by surprise (9.78%) and sadness (8.04%). The Gaussian Naive Bayes model achieved the highest accuracy, reaching 93.77% for sentiment testing and 100% for emotional response testing. The Multinomial Naive Bayes model achieved 81.48% for sentiment testing and 100% for emotional responses, while the Bernoulli Naive Bayes model achieved 60.77% and 52.50%, respectively. This study provides insights into public response patterns to national emergency issues, which can serve as a foundation for more effective crisis communication strategies. Keywords : Sentiment Analysis, Emotional Response, Emergency Warning, MPR Decree, Naive Bayes Classifier. Penelitian ini menganalisis respons emosional masyarakat terhadap peringatan darurat di media sosial menggunakan algoritma Naive Bayes Classifier. Sebanyak 2.448 data Twitter dikumpulkan dalam periode 16 Agustus 1 Desember 2024 dengan kata kunci seperti "Peringatan Darurat" dan "Tolak Keputusan MK". Analisis meliputi crawling data, preprocessing teks, pelabelan sentimen (positif, negatif, netral), dan klasifikasi menggunakan Gaussian, Multinomial, dan Bernoulli Naive Bayes. Hasil menunjukkan distribusi sentimen 38,90% negatif, 35,67% netral, dan 25,44% positif. Emosi dominan yang teridentifikasi adalah marah (22,23%), diikuti oleh terkejut (9,78%) dan sedih (8,04%). Model Gaussian Naive Bayes memberikan akurasi tertinggi, mencapai 93,77% pada data uji untuk sentimen dan 100% untuk respons emosional. Multinomial Naive Bayes memiliki akurasi uji 81,48% untuk sentimen dan 100% untuk respons emosional, sedangkan Bernoulli Naive Bayes mencapai 60,77% dan 52,50%. Penelitian ini memberikan wawasan tentang pola respons masyarakat terhadap isu darurat nasional yang dapat menjadi dasar strategi komunikasi krisis yang lebih efektif. Kata kunci: Analisis Sentimen, Ketetapan MPR, Naive Bayes Classifier, Respons Emosional, Peringatan Darurat.

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 25 007
NIM/NIDN Creators: 41521010062
Uncontrolled Keywords: Analisis Sentimen, Ketetapan MPR, Naive Bayes Classifier, Respons Emosional, Peringatan Darurat
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
100 Philosophy and Psychology/Filsafat dan Psikologi > 120 Epistemology/Epistemologi > 128 Humankind/Filsafat Kehidupan Manusia > 128.3 Attributes and Faculties/Atribut dan Fakultas > 128.37 Emotion/Emosi
100 Philosophy and Psychology/Filsafat dan Psikologi > 150 Psychology/Psikologi > 152 Sensory Perception, Movement, Emotions, Physiological Drives/Psikologi Fisiologis
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: khalimah
Date Deposited: 31 Jan 2025 09:49
Last Modified: 31 Jan 2025 09:49
URI: http://repository.mercubuana.ac.id/id/eprint/93811

Actions (login required)

View Item View Item