DEWANANTO, PANDYA YASSAR (2024) PENERAPAN ALGORITMA APRIORI UNTUK ANALISIS POLA PEMBELIAN DAN MENENTUKAN PRODUK TERLARIS DI RESTORAN KELUARGA. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (HAL COVER)
01 Cover.pdf Download (372kB) | Preview |
|
Text (BAB I)
02 Bab 1.pdf Restricted to Registered users only Download (31kB) |
||
Text (BAB II)
03 Bab 2.pdf Restricted to Registered users only Download (76kB) |
||
Text (BAB III)
04 Bab 3.pdf Restricted to Registered users only Download (256kB) |
||
Text (BAB IV)
05 Bab 4.pdf Restricted to Registered users only Download (677kB) |
||
Text (BAB V)
06 Bab 5.pdf Restricted to Registered users only Download (74kB) |
||
Text (DAFTAR PUSTAKA)
07 Daftar Pustaka.pdf Restricted to Registered users only Download (30kB) |
||
Text (LAMPIRAN)
08 Lampiran.pdf Restricted to Registered users only Download (663kB) |
Abstract
The restaurant industry is currently highly competitive, However, most restaurants have not deeply understood the habits and preferences of consumers, which ncreases the risk of reduced customer satisfaction and visits. Currently, restaurants have not fully utilized technology and data analysis optimally, often relying on intuition rather than data-driven decision-making. Without proper analysis, it becomes challenging for restaurants to identify popular menu items. This issue prompted the author to conduct research aimed at discovering customer preferences based on purchasing transaction patterns. The research employs a descriptive quantitative approach and a case study methodology. Descriptive analysis is used to understand the data before conducting more complex analysis in the next stage, which is association analysis using the Apriori algorithm. Transaction data was collected from the restaurant's POS system, extracted into an Excel file for further analysis. Data preprocessing involved cleaning and formatting transaction data to ensure accuracy and compatibility. This research successfully identified purchasing patterns at Waroeng Kopi restaurant using the Apriori Algorithm on 66,728 transaction records from January to May 2024. The association analysis uncovered item combinations with high purchase frequency and significant support and confidence values. The resulting association rules provide valuable insights into customer preferences, assisting in strategic decision-making, and enhancing customer satisfaction as well as inventory management efficiency. Keywords: Restaurant, Menus, Apriori, Associations, Purchase Patterns. Industri restoran saat ini sangat kompetitif sebaliknya restoran masih kurang memahami kebiasaan dan keinginan pelanggan yang akan beresiko menurunkan kepuasan dan kunjungan pelanggan. Saat ini restoran belum sepenuhnya memanfaatkan teknologi dan analisis data secara optimal, masih mengandalkan intuisi untuk pengambilan keputusan tidak berdasarkan data. Padahal tanpa analisis yang tepat, restoran sulit mengidentifikasi menu populer. Hal ini yang mendasari penulis melakukan penelitian untuk menemukan apa preferensi pelanggan berdasarkan pola transaksi pembelian. Penelitian menggunakan pendekatan deskriptif kuantitatif dan metodologi studi kasus. Analisis deskriptif bertujuan memahami data sebelum melakukan analisa yang lebih komplek pada tahapan selanjutnya yaitu analisis asosiasi algoritma apriori. Data transaksi dikumpulkan dari sistem POS restoran, diekstraksi dalam file Excel untuk analisis lebih lanjut. Preprocesing data melibatkan pembersihan dan pemformatan data transaksi untuk memastikan keakuratan dan kompatibilitas. Penelitian ini berhasil mengidentifikasi pola pembelian di restoran Waroeng Kopi menggunakan Algoritma Apriori pada 66728 data transaksi periode Januari hingga Mei 2024. Analisis asosiasi menemukan kombinasi-kombinasi item dengan frekuensi pembelian tinggi serta memiliki support dan confidence yang signifikan. Aturan asosiasi yang dihasilkan dapat memberikan wawasan penting tentang preferensi pelanggan, membantu dalam pengambilan keputusan strategis, dan meningkatkan kepuasan pelanggan serta efisiensi pengelolaan stok persediaan. Kata Kunci: Restoran, Menu, Algoritma Apriori, Assosiasi, Pola Pembelian.
Actions (login required)
View Item |