PREDICTING MPL ID MATCH WINNER THROUGH PLAYER STATISTICS AND TEAM PERFORMANCE METRICS: A DATA-DRIVEN ANALYSIS

FERDINAND, LUIS (2024) PREDICTING MPL ID MATCH WINNER THROUGH PLAYER STATISTICS AND TEAM PERFORMANCE METRICS: A DATA-DRIVEN ANALYSIS. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 Cover.pdf

Download (384kB) | Preview
[img]
Preview
Text (ABSTRAK)
02 Abstrak.pdf

Download (117kB) | Preview
[img] Text (BAB I)
03 Bab 1.pdf
Restricted to Registered users only

Download (141kB)
[img] Text (BAB II)
04 Bab 2.pdf
Restricted to Registered users only

Download (218kB)
[img] Text (BAB III)
05 Bab 3.pdf
Restricted to Registered users only

Download (123kB)
[img] Text (BAB IV)
06 Bab 4.pdf
Restricted to Registered users only

Download (427kB)
[img] Text (BAB V)
07 Bab 5.pdf
Restricted to Registered users only

Download (130kB)
[img] Text (DAFTAR PUSTAKA)
08 Daftar Pustaka.pdf
Restricted to Registered users only

Download (155kB)
[img] Text (LAMPIRAN)
09 Lampiran.pdf
Restricted to Registered users only

Download (488kB)

Abstract

This research aims to predict match outcomes in the Mobile Legends Professional League (MPL) using machine learning. The study analyzes player and team statistics, focusing on variables such as Gold/Game, Damage/Game, KDA, Objective Rating, and Win Rate. Data from the past 12 MPL seasons were used, with purposive sampling targeting relevant matches. Three machine learning algorithms were employed: Logistic Regression, Random Forest, and XGBoost. Exploratory Data Analysis (EDA) was conducted to identify significant features, followed by data preprocessing and normalization. Teams were encoded numerically for model training. The models were evaluated using a bestof-5 series function to predict match outcomes. Results showed ONIC as the consistent winner across all models, with variations in runner-up and third-place positions. Logistic Regression and XGBoost placed ONIC as the winner, with BTR and GEEK as the runner-up, respectively. The Random Forest model predicted EVOS as the runner-up. In conclusion, the models demonstrate the potential of machine learning in predicting esports match outcomes, providing valuable insights for MPL teams and analysts. Future research can improve accuracy by incorporating more detailed player metrics and considering META (most effective tactics available). Keywords: Machine Learning, MPL, Mobile Legends, Predictive Modeling, Esports Penelitian ini bertujuan untuk memprediksi hasil pertandingan di Mobile Legends Professional League (MPL) menggunakan pembelajaran mesin. Studi ini menganalisis statistik pemain dan tim, dengan fokus pada variabel seperti Gold/Game, Damage/Game, KDA, Objective Rating, dan Win Rate. Data dari 12 musim MPL terakhir digunakan, dengan teknik purposive sampling yang menargetkan pertandingan relevan. Tiga algoritma pembelajaran mesin digunakan: Logistic Regression, Random Forest, dan XGBoost. Analisis Data Eksploratif (EDA) dilakukan untuk mengidentifikasi fitur yang signifikan, diikuti dengan prapemrosesan dan normalisasi data. Tim dikodekan secara numerik untuk pelatihan model. Model dievaluasi menggunakan fungsi best-of-5 series untuk memprediksi hasil pertandingan. Hasil menunjukkan ONIC sebagai pemenang konsisten di semua model, dengan variasi pada posisi runner-up dan tempat ketiga. Logistic Regression dan XGBoost menempatkan ONIC sebagai pemenang, dengan BTR dan GEEK sebagai runnerup, masing-masing. Model Random Forest memprediksi EVOS sebagai runner-up. Kesimpulannya, model-model ini menunjukkan potensi pembelajaran mesin dalam memprediksi hasil pertandingan esports, memberikan wawasan berharga bagi tim dan analis MPL. Penelitian di masa depan dapat meningkatkan akurasi dengan memasukkan metrik pemain yang lebih rinci dan mempertimbangkan META (most effective tactics available). Kata Kunci: Pembelajaran Mesin, MPL, Mobile Legends, Pemodelan Prediktif, Esports

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 24 207
Call Number: SIK/15/24/151
NIM/NIDN Creators: 41520010233
Uncontrolled Keywords: Pembelajaran Mesin, MPL, Mobile Legends, Pemodelan Prediktif, Esports
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.3 Artificial Intelligence/Kecerdasan Buatan > 006.31 Machine Learning/Pembelajaran Mesin
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: khalimah
Date Deposited: 12 Sep 2024 04:30
Last Modified: 12 Sep 2024 04:30
URI: http://repository.mercubuana.ac.id/id/eprint/91331

Actions (login required)

View Item View Item