JAVA BATIK CLASSIFICATION BASED ON THE PATTERN USING CONVOLUTIONAL NEURAL NETWORK

ABPRIANTO, OKTAVIAN NIKKY (2024) JAVA BATIK CLASSIFICATION BASED ON THE PATTERN USING CONVOLUTIONAL NEURAL NETWORK. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVERS.pdf

Download (453kB) | Preview
[img]
Preview
Text (ABSTRAK)
02 Abstrak.pdf

Download (157kB) | Preview
[img] Text (BAB I)
03 CHAPTER 1.pdf
Restricted to Registered users only

Download (51kB)
[img] Text (BAB II)
04 CHAPTER 2.pdf
Restricted to Registered users only

Download (247kB)
[img] Text (BAB III)
05 CHAPTER 3.pdf
Restricted to Registered users only

Download (64kB)
[img] Text (BAB IV)
06 CHAPTER 4.pdf
Restricted to Registered users only

Download (224kB)
[img] Text (BAB V)
07 CHAPTER 5.pdf
Restricted to Registered users only

Download (48kB)
[img] Text (DAFTAR PUSTAKA)
08 REFERENCES.pdf
Restricted to Registered users only

Download (134kB)
[img] Text (LAMPIRAN)
09 ATTACHMENT.pdf
Restricted to Registered users only

Download (1MB)

Abstract

Batik is a profound and time-honored textile art with deep cultural roots in Southeast Asia, particularly in Indonesia. Beyond its aesthetic appeal, batik has enormous cultural and social significance in various Southeast Asian nations, serving as a conduit for the transmission of ancient narratives, philosophies, and rituals. This research focuses on the intricate world of Java batik, with the goal of improving classification using Convolutional Neural Networks. Java, known for its intricate batik patterns, serves as the canvas for refining the precision and efficiency of classifying these distinct designs using CNN. This study aims to provide new insights into Java batik classification by utilizing advanced machine learning techniques to contribute to the improved preservation and recognition of this cultural heritage. Keywords: Image Classification, CNN, Java Batik, Machine Learning Batik adalah seni gambar tekstil yang mendalam dan telah lama ada dengan akar budaya yang kuat di Asia Tenggara, khususnya di Indonesia. Selain daya tarik estetikanya, batik memiliki makna budaya dan sosial yang besar di berbagai negara Asia Tenggara, berfungsi sebagai saluran untuk mentransmisikan narasi kuno, filosofi, dan ritual. Penelitian ini berfokus pada dunia batik Jawa yang rumit, dengan tujuan meningkatkan klasifikasi menggunakan Convolutional Neural Networks (CNN). Jawa, yang dikenal dengan pola batiknya yang rumit, menjadi kanvas untuk menyempurnakan ketepatan dan efisiensi dalam mengklasifikasikan desain-desain yang berbeda ini menggunakan CNN. Studi ini bertujuan untuk memberikan wawasan baru tentang klasifikasi batik Jawa dengan memanfaatkan teknik pembelajaran mesin canggih untuk berkontribusi pada peningkatan pelestarian dan pengenalan warisan budaya ini.. Kata Kunci: Klasifikasi Gambar, CNN, Batik Jawa, Machine Learning

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 24 202
Call Number: SIK/15/24/145
NIM/NIDN Creators: 41520010230
Uncontrolled Keywords: Klasifikasi Gambar, CNN, Batik Jawa, Machine Learning
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.3 Artificial Intelligence/Kecerdasan Buatan > 006.31 Machine Learning/Pembelajaran Mesin
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.3 Artificial Intelligence/Kecerdasan Buatan > 006.32 Neural Nets (Neural Network)/Jaringan Saraf Buatan
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: khalimah
Date Deposited: 07 Sep 2024 07:45
Last Modified: 07 Sep 2024 07:45
URI: http://repository.mercubuana.ac.id/id/eprint/91278

Actions (login required)

View Item View Item