PENERAPAN ALGORITMA NAIVE BAYES PADA ANALISIS SENTIMEN TWITTER TERHADAP HARGA BERAS

FAHLEVI, ZUL HAM (2024) PENERAPAN ALGORITMA NAIVE BAYES PADA ANALISIS SENTIMEN TWITTER TERHADAP HARGA BERAS. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVER.pdf

Download (483kB) | Preview
[img]
Preview
Text (ABSTRAK)
02 ABSTRAK.pdf

Download (141kB) | Preview
[img] Text (BAB I)
03 BAB 1.pdf
Restricted to Registered users only

Download (158kB)
[img] Text (BAB II)
04 BAB 2.pdf
Restricted to Registered users only

Download (295kB)
[img] Text (BAB III)
05 BAB 3.pdf
Restricted to Registered users only

Download (445kB)
[img] Text (BAB IV)
06 BAB 4.pdf
Restricted to Registered users only

Download (657kB)
[img] Text (BAB V)
07 BAB 5.pdf
Restricted to Registered users only

Download (174kB)
[img] Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (163kB)
[img] Text (LAMPIRAN)
09 LAMPIRAN.pdf
Restricted to Registered users only

Download (544kB)

Abstract

Rice is the primary staple food for 98% of Indonesia's population and plays a crucial role in the national food structure. Fluctuations in rice prices can significantly impact the economy, especially by increasing the number of people living in poverty. Twitter has become a popular platform for expressing public opinions on various issues, including rice prices. Sentiment analysis can help classify public opinions into positive or negative using various algorithms. This research employs the Naïve Bayes algorithm for sentiment analysis of Twitter data regarding rice prices in Indonesia. The application of the Naïve Bayes algorithm to Twitter sentiment analysis on rice prices involves several stages, including data collection, data cleaning, automatic data labeling using the InSet Lexicon, word weighting using TF-IDF, splitting data into training and testing sets, and classification with the Naïve Bayes algorithm across four trials. The comparison of classification results shows that the trial with a 90:10 data split yields the best results with an Accuracy of 81.54%, Precision of 86.57%, Recall of 71.65%, and F1-score of 78.42%. From the analysis of the 10% testing data, 38.7% of the sentiments were categorized as positive, while 61.3% were negative. These results provide a clear picture of public opinion on rice prices on Twitter. Keywords: Sentiment Analysis, Naïve Bayes, Algorithm, Twitter Beras merupakan bahan pangan pokok utama bagi 98% penduduk Indonesia dan memiliki peran penting dalam struktur pangan nasional. Fluktuasi harga beras dapat berdampak signifikan pada ekonomi, terutama pada peningkatan jumlah penduduk miskin. Twitter menjadi platform yang populer untuk menyuarakan opini publik mengenai berbagai isu, termasuk harga beras. Analisis sentimen dapat membantu mengklasifikasikan opini publik menjadi positif atau negatif menggunakan berbagai algoritma. Penelitian ini menggunakan algoritma Naïve Bayes untuk analisis sentimen Twitter terhadap harga beras di Indonesia. Penerapan algoritma Naïve Bayes pada analisis sentimen Twitter terhadap harga beras melibatkan beberapa tahapan seperti seperti pengumpulan data, pembersihan data, pelabelan data otomatis menggunakan InSet Lexicon, pembobotan kata menggunakan TFIDF, pembagian data training dan data testing, serta klasifikasi algoritma Naïve Bayes dengan 4 kali percobaan. Hasil perbandingan klasifikasi menunjukkan bahwa percobaan dengan pembagian data 90:10 memberikan hasil terbaik dengan Accuracy: 81,54%, Precision: 86,57%, Recall: 71,65%, dan F1-score: 78,42%. Dari analisis data testing sebesar 10%, sebanyak 38,7% sentimen dikategorikan sebagai positif dan 61,3% sebagai negatif. Hasil ini memberikan gambaran yang jelas tentang opini publik mengenai harga beras di Twitter. Kata Kunci: Analis Sentimen, Naïve Bayes, Algoritma, Twitter

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 24 185
Call Number: SIK/15/24/133
NIM/NIDN Creators: 41520010167
Uncontrolled Keywords: Analis Sentimen, Naïve Bayes, Algoritma, Twitter
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.7 Multimedia Systems/Sistem-sistem Multimedia > 006.75 Social Multimedia/Multimedia Social
100 Philosophy and Psychology/Filsafat dan Psikologi > 150 Psychology/Psikologi > 154 Subconscious and Altered States and Process/Psikologi Bawah Sadar > 154.6 Sleep Phenomena/Fenomena Tidur > 154.63 Dreams/Mimpi > 154.634 Analysis/Analisis
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 510 Mathematics/Matematika > 518 Numerical Analysis/Analisis Numerik, Analisa Numerik > 518.1 Algorithms/Algoritma
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: khalimah
Date Deposited: 30 Aug 2024 09:26
Last Modified: 30 Aug 2024 09:26
URI: http://repository.mercubuana.ac.id/id/eprint/90930

Actions (login required)

View Item View Item