Nugroho, Dimas Panca (2024) ANALISIS SENTIMEN TERHADAP GAME LUDO KING PADA ULASAN GOOGLE PLAY STORE DENGAN METODE NAIVE BAYES. S1 thesis, Universitas Mercu Buana - Menteng.
Text (COVER)
41520110085-DIMAS PANCA NUGROHO-01 Cover - Delameta Pelabuhan Priok.pdf Download (553kB) |
|
Text (BAB I)
41520110085-DIMAS PANCA NUGROHO-02 Bab 1 - Delameta Pelabuhan Priok.pdf Restricted to Registered users only Download (220kB) |
|
Text (BAB II)
41520110085-DIMAS PANCA NUGROHO-03 Bab 2 - Delameta Pelabuhan Priok.pdf Restricted to Registered users only Download (905kB) |
|
Text (BAB III)
41520110085-DIMAS PANCA NUGROHO-04 Bab 3 - Delameta Pelabuhan Priok.pdf Restricted to Registered users only Download (347kB) |
|
Text (BAB IV)
41520110085-DIMAS PANCA NUGROHO-05 Bab 4 - Delameta Pelabuhan Priok.pdf Restricted to Registered users only Download (527kB) |
|
Text (BAB V)
41520110085-DIMAS PANCA NUGROHO-06 Bab 5 - Delameta Pelabuhan Priok.pdf Restricted to Registered users only Download (193kB) |
|
Text (DAFTAR PUSTAKA)
41520110085-DIMAS PANCA NUGROHO-07 Daftar Pustaka - Delameta Pelabuhan Priok.pdf Restricted to Registered users only Download (248kB) |
|
Text (LAMPIRAN)
41520110085-DIMAS PANCA NUGROHO-08 Lampiran - Delameta Pelabuhan Priok.pdf Restricted to Registered users only Download (632kB) |
Abstract
Dalam era digital yang terhubung secara intensif, media sosial menjadi saluran utama bagi interaksi antara pengguna dan produk digital. Fokus pada analisis sentimen terhadap ulasan game Ludo King pada platform Google Play Store menggunakan metode Naïve Bayes. Tujuan utama penelitian ini adalah untuk memahami tanggapan dan pandangan pengguna terhadap game ini dengan mengelompokkan ulasan mereka ke dalam kategori sentimen positif, negatif, atau netral. Pengumpulan data dilakukan melalui teknik scraping karena keterbatasan akses terhadap data yang tersedia secara langsung. Pendekatan ini dipilih untuk memperoleh data ulasan yang autentik dan representatif dari pengguna game Ludo King. Data yang terkumpul kemudian diolah dan disiapkan untuk analisis sentimen menggunakan metode Naïve Bayes. Langkah selanjutnya melibatkan pelatihan model klasifikasi Naïve Bayes menggunakan data yang telah diproses untuk memprediksi sentimen ulasan. Evaluasi model dilakukan dengan menggunakan metrik yang relevan untuk mengukur performa model dalam mengklasifikasikan sentimen ulasan dengan tepat. In today's highly connected digital world, social media has become the primary channel for interactions between users and digital products. This study focuses on sentiment analysis of Ludo King game reviews on the Google Play Store platform using the Naïve Bayes method. The main goal is to understand user feedback and opinions on the game by categorizing reviews into positive, negative, or neutral sentiments. Data collection was performed using scraping techniques due to limited access to directly available data. This method was chosen to obtain authentic and representative review data from Ludo King users. The collected data was then processed and prepared for sentiment analysis using the Naïve Bayes method. The next step involves training a Naïve Bayes classification model with the processed data to predict review sentiments. Model evaluation is conducted using relevant metrics to assess the model's accuracy in classifying sentiments. The findings are expected to provide valuable insights into users' perceptions of the Ludo King game. This information can help game developers enhance features and gameplay experiences, and also contribute to the development of sentiment analysis methods for digital product reviews using the Naïve Bayes approach, particularly in the Indonesian context.
Item Type: | Thesis (S1) |
---|---|
NIM/NIDN Creators: | 41520110085 |
Uncontrolled Keywords: | Sentimen Analisis, Naïve Bayes, Google Play Store, Ludo King Sentiment Analysis, Naïve Bayes, Google Play Store, Ludo King. |
Subjects: | 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika |
Divisions: | Fakultas Ilmu Komputer > Informatika |
Depositing User: | SILMI KAFFA MARISKA |
Date Deposited: | 30 Aug 2024 04:17 |
Last Modified: | 30 Aug 2024 04:17 |
URI: | http://repository.mercubuana.ac.id/id/eprint/90882 |
Actions (login required)
View Item |