PREDIKSI HARGA CABAI RAWIT MERAH DI PROVINSI JAWA TIMUR MENGGUNAKAN ALGORITMA SVR

SUKUR, DAAN (2024) PREDIKSI HARGA CABAI RAWIT MERAH DI PROVINSI JAWA TIMUR MENGGUNAKAN ALGORITMA SVR. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 Cover.pdf

Download (491kB) | Preview
[img]
Preview
Text (ABSTRAK)
02 Abstrak.pdf

Download (29kB) | Preview
[img] Text (BAB I)
03 Bab 1.pdf
Restricted to Registered users only

Download (84kB)
[img] Text (BAB II)
04 Bab 2.pdf
Restricted to Registered users only

Download (263kB)
[img] Text (BAB III)
05 Bab 3.pdf
Restricted to Registered users only

Download (142kB)
[img] Text (BAB IV)
06 Bab 4.pdf
Restricted to Registered users only

Download (238kB)
[img] Text (BAB V)
07 Bab 5.pdf
Restricted to Registered users only

Download (29kB)
[img] Text (DAFTAR PUSTAKA)
08 Daftar Pustaka.pdf
Restricted to Registered users only

Download (127kB)
[img] Text (LAMPIRAN)
09 Lampiran.pdf
Restricted to Registered users only

Download (497kB)

Abstract

" Red chili peppers play a significant role in the economy and daily life of Indonesian society, particularly in East Java Province, one of the largest producing regions. Sharp price fluctuations of this commodity can cause serious problems for farmers and the government, as unstable prices can significantly affect farmers' income and consumer consumption. The SVR model was optimized using Grid Search with cross-validation to determine the best parameters. The optimal parameters obtained were 'C': 10, 'epsilon': 0.01, 'gamma': 'auto', and 'kernel': 'rbf'. Model evaluation showed a Mean Absolute Percentage Error (MAPE) of 2.42% for the training data and 2.89% for the testing data. The results of this study indicate that the SVR model can be relied upon for predicting the price of red chili peppers in East Java Province." Cabai rawit merah memiliki peran penting dalam perekonomian dan kehidupan sehari-hari masyarakat Indonesia, khususnya di Provinsi Jawa Timur yang merupakan salah satu daerah penghasil terbesar. Fluktuasi harga yang tajam pada komoditas ini dapat menimbulkan masalah serius bagi petani dan pemerintah, karena harga yang tidak stabil dapat mempengaruhi pendapatan petani dan konsumsi masyarakat. Model SVR dioptimalkan menggunakan Grid Search dengan cross-validation untuk menentukan parameter terbaik. Parameter optimal yang diperoleh adalah 'C': 10, 'epsilon': 0.01, 'gamma': 'auto', dan 'kernel': 'rbf'. Evaluasi model menunjukkan nilai Mean Absolute Percentage Error (MAPE) sebesar 2.42% untuk data pelatihan dan 2.89% untuk data pengujian. Hasil penelitian ini menunjukkan bahwa model SVR dapat diandalkan untuk prediksi harga cabai rawit merah di Provinsi Jawa Timur.

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 24 179
NIM/NIDN Creators: 41520010098
Uncontrolled Keywords: SVR, Cabai Rawit Merah, Prediksi
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 510 Mathematics/Matematika > 518 Numerical Analysis/Analisis Numerik, Analisa Numerik > 518.1 Algorithms/Algoritma
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: ANANDA NADIRA PUTRI
Date Deposited: 24 Aug 2024 04:28
Last Modified: 24 Aug 2024 04:28
URI: http://repository.mercubuana.ac.id/id/eprint/90689

Actions (login required)

View Item View Item