KLASIFIKASI TINGKAT AEROSOL TERHADAP SINAR ULTRAVIOLET PLTU SURALAYA MENGGUNAKAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK INSTRUMEN TROPOMI PADA SENTINEL-5P

PRATIWI, AMALIA (2024) KLASIFIKASI TINGKAT AEROSOL TERHADAP SINAR ULTRAVIOLET PLTU SURALAYA MENGGUNAKAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK INSTRUMEN TROPOMI PADA SENTINEL-5P. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 Cover.pdf

Download (569kB) | Preview
[img]
Preview
Text (ABSTRAK)
02 Abstrak.pdf

Download (31kB) | Preview
[img] Text (BAB I)
03 Bab 1.pdf
Restricted to Registered users only

Download (271kB)
[img] Text (BAB II)
04 Bab 2.pdf
Restricted to Registered users only

Download (385kB)
[img] Text (BAB III)
05 Bab 3.pdf
Restricted to Registered users only

Download (82kB)
[img] Text (BAB IV)
06 Bab 4.pdf
Restricted to Registered users only

Download (612kB)
[img] Text (BAB V)
07 Bab 5.pdf
Restricted to Registered users only

Download (28kB)
[img] Text (DAFTAR PUSTAKA)
08 Daftar Pustaka.pdf
Restricted to Registered users only

Download (135kB)
[img] Text (LAMPIRAN)
09 Lampiran.pdf
Restricted to Registered users only

Download (520kB)

Abstract

This study aims to classify aerosol levels in relation to ultraviolet radiation at the Suralaya coal-fired power plant (PLTU) using the Convolutional Neural Network (CNN) algorithm with data from the TROPOMI instrument on the Sentinel-5P satellite. The increase in air pollution in the regions of Banten, West Java, and DKI Jakarta, primarily caused by emissions from coal-fired power plants, underscores the need for improved monitoring systems. In this research, aerosol data were collected from TROPOMI and processed using remote sensing techniques and CNN analysis to identify pollution levels. The study successfully classified aerosol levels in the Suralaya PLTU area using Sentinel-5P satellite data from June 1 to December 31, 2023. The Convolutional Neural Network (CNN) algorithm demonstrated high performance with an accuracy of 96.40%, precision of 96.68%, recall of 96.40%, and an F1-Score of 96.47%, indicating a high agreement between predictions and actual results. Aerosol content in this area tends to be high, with concentrations predominantly at level 2 (unhealthy). The model also achieved a MAPE of 2.75, indicating a low prediction error rate. Overall, the CNN algorithm proved reliable in classifying aerosol levels and air quality. Keyword: Aerosol, Suralaya Coal-Fired Power Plant, Convolutional Neural Network, TROPOMI, Sentinel-5P Penelitian ini bertujuan untuk mengklasifikasikan tingkat aerosol terhadap sinar ultraviolet di PLTU Suralaya menggunakan algoritma Convolutional Neural Network (CNN) dengan data dari instrumen TROPOMI pada satelit Sentinel-5P. Peningkatan polusi udara di wilayah Banten, Jawa Barat, dan DKI Jakarta, terutama disebabkan oleh emisi dari PLTU batu bara, mendorong perlunya sistem pemantauan yang lebih baik. Dalam penelitian ini, data aerosol dikumpulkan dari TROPOMI dan diproses menggunakan teknik penginderaan jauh serta analisis CNN untuk mengidentifikasikan tingkat polusi. Penelitian ini berhasil mengklasifikasikan tingkat aerosol di wilayah PLTU Suralaya menggunakan data satelit Sentinel-5P dari 1 Juni hingga 31 Desember 2023. Algoritma Convolutional Neural Network (CNN) menunjukkan performa tinggi dengan akurasi 96,40%, presisi 96,68%, recall 96,40%, dan F1-Score 96,47%, menunjukkan kesepakatan tinggi antara prediksi dan hasil aktual. Kandungan aerosol di wilayah ini cenderung tinggi dengan konsentrasi dominan pada tingkat 2 (tidak sehat). Model ini juga mencapai MAPE 2,75, menunjukkan tingkat kesalahan prediksi yang rendah. Secara keseluruhan, algoritma CNN terbukti andal dalam klasifikasi tingkat aerosol dan kualitas udara. Kata kunci: Aerosol, PLTU Suralaya, Convolutional Neural Network, TROPOMI, Sentinel-5P

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 24 171
Call Number: SIK/15/24/124
NIM/NIDN Creators: 41520010237
Uncontrolled Keywords: Aerosol, PLTU Suralaya, Convolutional Neural Network, TROPOMI, Sentinel-5P
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.3 Artificial Intelligence/Kecerdasan Buatan > 006.32 Neural Nets (Neural Network)/Jaringan Saraf Buatan
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 510 Mathematics/Matematika > 518 Numerical Analysis/Analisis Numerik, Analisa Numerik > 518.1 Algorithms/Algoritma
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 530 Physics/Fisika > 535 Light, Infrared and Ultraviolet Phenomena/Cahaya Optik, Infra Merah dan Fenomena Ultraviolet
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 530 Physics/Fisika > 535 Light, Infrared and Ultraviolet Phenomena/Cahaya Optik, Infra Merah dan Fenomena Ultraviolet > 535.5 Beams/Sinar
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: khalimah
Date Deposited: 16 Aug 2024 08:07
Last Modified: 16 Aug 2024 08:07
URI: http://repository.mercubuana.ac.id/id/eprint/90307

Actions (login required)

View Item View Item