A SENTIMENT POLARITY ANALYSIS OF INTERNATIONAL ENGLISH-SPEAKING FANS' REACTIONS TO 'ONE PIECE' LIVE-ACTION ADAPTATION

KRISTIANTO, ERICK (2024) A SENTIMENT POLARITY ANALYSIS OF INTERNATIONAL ENGLISH-SPEAKING FANS' REACTIONS TO 'ONE PIECE' LIVE-ACTION ADAPTATION. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
Cover.pdf

Download (328kB) | Preview
[img]
Preview
Text (ABSTRAK)
Abstrak.pdf

Download (30kB) | Preview
[img] Text (BAB I)
Bab 1.pdf
Restricted to Registered users only

Download (135kB)
[img] Text (BAB II)
Bab 2.pdf
Restricted to Registered users only

Download (242kB)
[img] Text (BAB III)
Bab 3.pdf
Restricted to Registered users only

Download (311kB)
[img] Text (BAB IV)
Bab 4.pdf
Restricted to Registered users only

Download (480kB)
[img] Text (BAB V)
Bab 5.pdf
Restricted to Registered users only

Download (28kB)
[img] Text (DAFTAR PUSTAKA)
Daftar Pustaka.pdf
Restricted to Registered users only

Download (174kB)
[img] Text (LAMPIRAN)
Lampiran.pdf
Restricted to Registered users only

Download (610kB)

Abstract

With the increasing popularity of live-action adaptations of beloved anime series, understanding fan sentiments is essential. This research employs sentiment analysis to explore the perceptions of international English-speaking fans regarding the "One Piece" live-action adaptation. Utilizing the Python Reddit API Wrapper (PRAW) and machine learning techniques, we analyze Reddit discussions, employing Support Vector Machines (SVM) and Random Forest algorithms for sentiment classification.Our findings reveal that the majority of fan comments express positive sentiments towards the "One Piece" live-action adaptation, with 8790 instances of positive sentiment compared to 5498 instances of negative sentiment. The SVM model using SGDClassifier emerged as the top performer, demonstrating the highest precision and Cohen's Kappa score among the evaluated models. This study contributes to Information Technology and media studies by offering insights into fan sentiments and the accuracy of sentiment analysis methods. It informs decision-making for producers, addresses real-world implications, and bridges gaps for stakeholders. Additionally, it enhances academic understanding of sentiment dynamics within fan communities, particularly concerning liveaction anime adaptations. Keywords: Sentiment Analysis, One Piece, Live-Action Adaptation, Machine Learning, SVM, Random Forest Dengan semakin populernya adaptasi live-action dari serial anime yang dicintai, memahami sentimen penggemar menjadi sangat penting. Penelitian ini menggunakan analisis sentimen untuk mengeksplorasi persepsi penggemar internasional berbahasa Inggris terhadap adaptasi live-action "One Piece". Dengan memanfaatkan Python Reddit API Wrapper (PRAW) dan teknik machine learning, kami menganalisis diskusi di Reddit, menggunakan algoritma Support Vector Machines (SVM) dan Random Forest untuk klasifikasi sentimen. Temuan kami mengungkapkan bahwa mayoritas komentar penggemar menyampaikan sentimen positif terhadap adaptasi live-action "One Piece", dengan 8790 komentar bernada positif dibandingkan dengan 5498 komentar bernada negatif. Model SVM dengan SGDClassifier muncul sebagai yang berkinerja terbaik, menunjukkan presisi dan skor Cohen's Kappa tertinggi di antara model yang dievaluasi. Studi ini berkontribusi pada bidang Teknologi Informasi dan studi media dengan menawarkan wawasan tentang sentimen penggemar dan akurasi metode analisis sentimen. Penelitian ini memberikan informasi untuk pengambilan keputusan bagi produser, menangani implikasi dunia nyata, dan menjembatani kesenjangan bagi pemangku kepentingan. Selain itu, penelitian ini meningkatkan pemahaman akademis tentang dinamika sentimen dalam komunitas penggemar, khususnya terkait adaptasi live-action anime. Kata Kunci: Analisis Sentimen, One Piece, Adaptasi Live-Action, Machine Learning, SVM, Random Forest

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 24 107
Call Number: SIK/15/24/073
NIM/NIDN Creators: 41520010150
Uncontrolled Keywords: Analisis Sentimen, One Piece, Adaptasi Live-Action, Machine Learning, SVM, Random Forest
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.3 Artificial Intelligence/Kecerdasan Buatan > 006.31 Machine Learning/Pembelajaran Mesin
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 570 Biology/Biologi, Ilmu Hayat > 577 Ecology/Ekologi > 577.3 Forest Ecology/Ekologi Hutan, Ekologi Kehutanan
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 580 Plants, Botany/Tumbuh-tumbuhan, Tanaman, Botani, Flora > 581 Specific Topics of Plants/Topik Khusus tentang Perkembangan Tumbuhan, Perkembangan Tanaman > 581.4 Adaptation of Plants/Adaptasi Tumbuhan, Adaptasi Tanaman
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: khalimah
Date Deposited: 13 Jul 2024 02:30
Last Modified: 13 Jul 2024 02:30
URI: http://repository.mercubuana.ac.id/id/eprint/89495

Actions (login required)

View Item View Item