TAQWA, MUH JADID (2024) IMPLEMENTASI STREAMLIT UNTUK PEMBUATAN DASHBOARD ANALISIS PENERIMAAN PAJAK HARIAN: STUDI KASUS DI KANTOR PELAYANAN PAJAK. S1 thesis, Universitas Mercu Buana - Menteng.
Text (Cover)
41520120026-Muh Jadid Taqwa-01 Cover - MUH JADID TAQWA.pdf Download (318kB) |
|
Text (Abstrak)
41520120026-Muh Jadid Taqwa-02 Abstrak - MUH JADID TAQWA.pdf Download (36kB) |
|
Text (Bab 1)
41520120026-Muh Jadid Taqwa-03 Bab 1 - MUH JADID TAQWA.pdf Restricted to Registered users only Download (43kB) |
|
Text (Bab 2)
41520120026-Muh Jadid Taqwa-04 Bab 2 - MUH JADID TAQWA.pdf Restricted to Registered users only Download (243kB) |
|
Text (Bab 3)
41520120026-Muh Jadid Taqwa-05 Bab 3 - MUH JADID TAQWA.pdf Restricted to Registered users only Download (84kB) |
|
Text (Bab 4)
41520120026-Muh Jadid Taqwa-06 Bab 4 - MUH JADID TAQWA.pdf Restricted to Registered users only Download (1MB) |
|
Text (Bab 5)
41520120026-Muh Jadid Taqwa-07 Bab 5 - MUH JADID TAQWA.pdf Restricted to Registered users only Download (36kB) |
|
Text (Daftar Pustaka)
41520120026-Muh Jadid Taqwa-08 Daftar Pustaka - MUH JADID TAQWA.pdf Restricted to Registered users only Download (107kB) |
|
Text (Lampiran)
41520120026-Muh Jadid Taqwa-09 Lampiran - MUH JADID TAQWA.pdf Restricted to Registered users only Download (646kB) |
|
Text (Lembar Keabsahan)
41520120026-Muh Jadid Taqwa-10 Hasil Scan Formulir Pernyataan Keabsahan dan Persetujuan Publikasi Tugas Akhir - MUH JADID TAQWA.pdf Restricted to Repository staff only Download (184kB) |
Abstract
Penelitian ini berfokus pada implementasi Streamlit untuk pembuatan dashboard analisis penerimaan pajak harian, dengan studi kasus di Kantor Pelayanan Pajak. Tujuan utama penelitian ini adalah mengembangkan dashboard interaktif dan user- friendly menggunakan framework Streamlit, serta mengevaluasi kinerja algoritma Random Forest, XGBoost, dan Regresi Linear dalam memprediksi penerimaan pajak harian. Metodologi yang digunakan meliputi studi literatur, perumusan masalah, pengumpulan data penerimaan pajak harian, analisis data menggunakan algoritma machine learning, dan pembuatan dashboard Streamlit. Hasil penelitian menunjukkan bahwa Streamlit efektif dalam visualisasi dan analisis data penerimaan pajak harian. Algoritma XGBoost menunjukkan kinerja terbaik setelah dilakukan tuning hyperparameter. Penelitian ini memberikan kontribusi dalam menyediakan alat analisis dan prediksi yang membantu pengambilan keputusan di bidang perpajakan. This research focuses on the implementation of Streamlit to create a dashboard for analyzing daily tax revenue, using a case study at a Tax Office. The main objective of this study is to develop an interactive and user-friendly dashboard utilizing the Streamlit framework, and to evaluate the performance of Random Forest, XGBoost, and Linear Regression algorithms in predicting daily tax revenue. The methodology includes literature review, problem formulation, daily tax revenue data collection, data analysis using machine learning algorithms, and the development of the Streamlit dashboard. The results of the study indicate that Streamlit is effective in visualizing and analyzing daily tax revenue data. The XGBoost algorithm demonstrated the best performance after hyperparameter tuning. This research contributes by providing an analytical and predictive tool that aids decision-making in the field of taxation.
Item Type: | Thesis (S1) |
---|---|
NIM/NIDN Creators: | 41520120026 |
Uncontrolled Keywords: | Streamlit, Dashboard, Random Forest, XGBoost, Regresi Linear Streamlit, Dashboard, Random Forest, XGBoost, Regresi Linear |
Subjects: | 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika |
Divisions: | Fakultas Ilmu Komputer > Informatika |
Depositing User: | NAYLA AURA RAYANI |
Date Deposited: | 19 Jun 2024 04:28 |
Last Modified: | 19 Jun 2024 04:28 |
URI: | http://repository.mercubuana.ac.id/id/eprint/88978 |
Actions (login required)
View Item |