RIDWAN, MUHAMMAD (2024) ANALISIS PENGGUNAAN MATERIAL FAST MOVING DAN SLOW MOVING DALAM PERAWATAN GEDUNG MENGGUNAKAN ALGORITMA NAIVE BAYES DAN SUPPORT VECTOR MACHINE. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (HAL COVER)
01 COVER.pdf Download (289kB) | Preview |
|
|
Text (ABSTRAK)
02 ABSTRAK.pdf Download (29kB) | Preview |
|
Text (BAB I)
03 BAB 1.pdf Restricted to Registered users only Download (41kB) |
||
Text (BAB II)
04 BAB 2.pdf Restricted to Registered users only Download (177kB) |
||
Text (BAB III)
05 BAB 3.pdf Restricted to Registered users only Download (50kB) |
||
Text (BAB IV)
06 BAB 4.pdf Restricted to Registered users only Download (440kB) |
||
Text (BAB V)
07 BAB 5.pdf Restricted to Registered users only Download (35kB) |
||
Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf Restricted to Registered users only Download (101kB) |
||
Text (LAMPIRAN)
09 LAMPIRAN.pdf Restricted to Registered users only Download (335kB) |
Abstract
This research aims to analyze the use and level of accuracy of the two algorithms on fast moving and slow moving materials. The algorithms used are Naïve Bayes and Support Vector Machine (SVM). The research results show that the Naïve Bayes algorithm has a precision, recall and accuracy rate of 95%, while the Support Vector Machine (SVM) algorithm only achieves an accuracy of 77%. Naïve Bayes is also effective in classifying fast and slow moving materials, so it can help in the process of purchasing materials needed for building maintenance. Keywords: Materials, Accuracy, Methods, Naïve Bayes, Support Vector Machine Penelitian ini bertujuan untuk menganalisis penggunaan dan tingkat akurasi kedua algoritma pada bahan material fast moving dan slow moving. Algoritma yang digunakan adalah Naïve Bayes dan Support Vector Machine (SVM). Hasil penelitian menunjukkan bahwa algoritma Naïve Bayes memiliki ketepatan, recall, dan tingkat akurasi sebesar 95%, sementara algoritma Support Vector Machine (SVM) hanya mencapai akurasi sebesar 77%. Naïve Bayes juga efektif dalam mengklasifikasikan material yang fast dan slow moving, sehingga dapat membantu dalam proses pembelian material yang diperlukan untuk perawatan gedung. Kata Kunci : Bahan Material, Akurasi, Metode, Naïve Bayes, Support Vector Machine
Actions (login required)
View Item |