ANALISIS PENGGUNAAN MATERIAL FAST MOVING DAN SLOW MOVING DALAM PERAWATAN GEDUNG MENGGUNAKAN ALGORITMA NAIVE BAYES DAN SUPPORT VECTOR MACHINE

RIDWAN, MUHAMMAD (2024) ANALISIS PENGGUNAAN MATERIAL FAST MOVING DAN SLOW MOVING DALAM PERAWATAN GEDUNG MENGGUNAKAN ALGORITMA NAIVE BAYES DAN SUPPORT VECTOR MACHINE. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVER.pdf

Download (289kB) | Preview
[img]
Preview
Text (ABSTRAK)
02 ABSTRAK.pdf

Download (29kB) | Preview
[img] Text (BAB I)
03 BAB 1.pdf
Restricted to Registered users only

Download (41kB)
[img] Text (BAB II)
04 BAB 2.pdf
Restricted to Registered users only

Download (177kB)
[img] Text (BAB III)
05 BAB 3.pdf
Restricted to Registered users only

Download (50kB)
[img] Text (BAB IV)
06 BAB 4.pdf
Restricted to Registered users only

Download (440kB)
[img] Text (BAB V)
07 BAB 5.pdf
Restricted to Registered users only

Download (35kB)
[img] Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (101kB)
[img] Text (LAMPIRAN)
09 LAMPIRAN.pdf
Restricted to Registered users only

Download (335kB)

Abstract

This research aims to analyze the use and level of accuracy of the two algorithms on fast moving and slow moving materials. The algorithms used are Naïve Bayes and Support Vector Machine (SVM). The research results show that the Naïve Bayes algorithm has a precision, recall and accuracy rate of 95%, while the Support Vector Machine (SVM) algorithm only achieves an accuracy of 77%. Naïve Bayes is also effective in classifying fast and slow moving materials, so it can help in the process of purchasing materials needed for building maintenance. Keywords: Materials, Accuracy, Methods, Naïve Bayes, Support Vector Machine Penelitian ini bertujuan untuk menganalisis penggunaan dan tingkat akurasi kedua algoritma pada bahan material fast moving dan slow moving. Algoritma yang digunakan adalah Naïve Bayes dan Support Vector Machine (SVM). Hasil penelitian menunjukkan bahwa algoritma Naïve Bayes memiliki ketepatan, recall, dan tingkat akurasi sebesar 95%, sementara algoritma Support Vector Machine (SVM) hanya mencapai akurasi sebesar 77%. Naïve Bayes juga efektif dalam mengklasifikasikan material yang fast dan slow moving, sehingga dapat membantu dalam proses pembelian material yang diperlukan untuk perawatan gedung. Kata Kunci : Bahan Material, Akurasi, Metode, Naïve Bayes, Support Vector Machine

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 24 098
NIM/NIDN Creators: 41519120010
Uncontrolled Keywords: Bahan Material, Akurasi, Metode, Naïve Bayes, Support Vector Machine
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 020 Library and Information Sciences/Perpustakaan dan Ilmu Informasi > 025 Operations, Archives, Information Centers/Operasional Perpustakaan, Arsip dan Pusat Informasi, Pelayanan dan Pengelolaan Perpustakaan > 025.3 Bibliographic Analysis and Control/Bibliografi Analisis dan Kontrol Perpustakaan > 025.34 Cataloging, Classification, Indexing of Special Materials/Pengatalogan, Klasifikasi, Pengindeksan Bahan Tertentu > 025.344 Machine-Readable Materials/Bahan yang Dapat Dibaca Mesin
200 Religion/Agama > 260 Christian Social Theology/Teologi Sosial Kristen > 268 Religious Education/Pendidikan Agama Kristen, Pengajaran Agama Kristen > 268.2 Buildings and Equipment/Gedung dan Peralatan
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 510 Mathematics/Matematika > 518 Numerical Analysis/Analisis Numerik, Analisa Numerik > 518.1 Algorithms/Algoritma
600 Technology/Teknologi > 690 Buildings/Teknik Bangunan > 691 Building Material/Material Bangunan
700 Arts/Seni, Seni Rupa, Kesenian > 790 Recreational and Performing Arts/Olah Raga dan Seni Pertunjukan > 799 Fishing, Hunting, Shooting > 799.3 Shooting/Olah Raga Menembak > 799.31 Shooting With Guns/Menembak dengan Senjata > 799.313 Shooting at Moving Targets/Menembak pada Target Bergerak
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: khalimah
Date Deposited: 29 May 2024 02:43
Last Modified: 29 May 2024 02:43
URI: http://repository.mercubuana.ac.id/id/eprint/88792

Actions (login required)

View Item View Item