IMPLEMENTASI PENGENALAN WAJAH UNTUK DAFTAR HADIR KARYAWAN BERBASIS WEBSITE BERDASARKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN)

HERMAWAN, ADHIKA (2024) IMPLEMENTASI PENGENALAN WAJAH UNTUK DAFTAR HADIR KARYAWAN BERBASIS WEBSITE BERDASARKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN). S1 thesis, Universitas Mercu Buana Jakarta.

[img] Text (HAL COVER)
01 COVER.pdf

Download (362kB)
[img] Text (ABSTRAK)
02 ABSTRAK.pdf

Download (116kB)
[img] Text (BAB I)
03 BAB 1.pdf
Restricted to Registered users only

Download (125kB)
[img] Text (BAB II)
04 BAB 2.pdf
Restricted to Registered users only

Download (220kB)
[img] Text (BAB III)
05 BAB 3.pdf
Restricted to Registered users only

Download (212kB)
[img] Text (BAB IV)
06 BAB 4.pdf
Restricted to Registered users only

Download (370kB)
[img] Text (BAB V)
07 BAB 5.pdf
Restricted to Registered users only

Download (108kB)
[img] Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (161kB)
[img] Text (LAMPIRAN)
09 LAMPIRAN.pdf
Restricted to Registered users only

Download (958kB)

Abstract

This research aims to integrate facial recognition technology using the CNN algorithm, supported by the MobileNet v1 SSD model, in the employee attendance registration process via the website platform. The research steps involved identification of the problem underlying the need for an efficient system, literature study in the context of facial recognition and CNN architecture, and collection and processing of relevant data. Application implementation and website creation were the main focus in designing this solution, which then underwent a testing phase to evaluate the performance of the resulting model. In-depth results analysis was carried out to understand the potential and limitations of the system developed. Model evaluation shows a satisfactory level of accuracy, with results of 93% for facial recognition and 66% for facial emotion detection. The system output in the form of an attendance history report provides added value by providing a track record of entry and exit for each employee. Thus, this research not only contributes to the application of facial recognition technology, but also presents a practical solution for managing employee attendance lists effectively through a website-based platform. Keywords: CNN Algorithm, Face-api.js, SSD MobileNet v1, Human Face Recognition, Human Facial Emotion Detection Penelitian ini bertujuan untuk mengintegrasikan teknologi pengenalan wajah menggunakan algoritma CNN, didukung oleh model SSD MobileNet v1, dalam proses daftar hadir karyawan melalui platform website. Langkah-langkah penelitian melibatkan identifikasi masalah yang mendasari kebutuhan akan sistem efisien, studi literatur dalam konteks pengenalan wajah dan arsitektur CNN, serta pengumpulan dan pemrosesan data yang relevan. Implementasi aplikasi dan pembuatan website menjadi fokus utama dalam merancang solusi ini, yang kemudian menjalani tahap pengujian untuk mengevaluasi kinerja model yang dihasilkan. Analisis hasil mendalam dilakukan untuk memahami potensi dan keterbatasan dari sistem yang dikembangkan. Evaluasi model menunjukkan tingkat akurasi yang memuaskan, dengan hasil sebesar 93% untuk pengenalan wajah dan 66% untuk pendeteksian emosi wajah. Output sistem berupa laporan riwayat absensi memberikan nilai tambah dengan memberikan rekam jejak masuk dan keluar setiap karyawan. Dengan demikian, penelitian ini tidak hanya memberikan kontribusi dalam penerapan teknologi pengenalan wajah, tetapi juga menghadirkan solusi praktis untuk pengelolaan daftar hadir karyawan secara efektif melalui platform berbasis website. Kata Kunci: Algoritma CNN, Face-api.js, SSD MobileNet v1, Pengenalan Wajah Manusia, Deteksi Emosi Wajah Manusia

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 24 092
NIM/NIDN Creators: 41519120090
Uncontrolled Keywords: Algoritma CNN, Face-api.js, SSD MobileNet v1, Pengenalan Wajah Manusia, Deteksi Emosi Wajah Manusia
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.3 Artificial Intelligence/Kecerdasan Buatan > 006.32 Neural Nets (Neural Network)/Jaringan Saraf Buatan
100 Philosophy and Psychology/Filsafat dan Psikologi > 150 Psychology/Psikologi > 153 Conscious Mental Process and Intelligence/Intelegensia, Kecerdasan Proses Intelektual dan Mental > 153.1 Memory and Learning/Memori dan Pembelajaran > 153.12 Memory/Memori > 153.124 Recognition/Pengenalan
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: khalimah
Date Deposited: 04 May 2024 06:30
Last Modified: 04 May 2024 06:30
URI: http://repository.mercubuana.ac.id/id/eprint/88472

Actions (login required)

View Item View Item