ANALISIS KINERJA ALGORITMA NAIVE BAYES DAN SUPPORT VECTOR MACHINE DALAM KLASIFIKASI BERITA OTOMATIS WEB TRUSTED NEWS

HIDAYAT, FIRMAN (2024) ANALISIS KINERJA ALGORITMA NAIVE BAYES DAN SUPPORT VECTOR MACHINE DALAM KLASIFIKASI BERITA OTOMATIS WEB TRUSTED NEWS. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVER.pdf

Download (770kB) | Preview
[img]
Preview
Text (ABSTRAK)
02 ABSTRAK.pdf

Download (226kB) | Preview
[img] Text (BAB I)
03 BAB 1.pdf
Restricted to Registered users only

Download (230kB)
[img] Text (BAB II)
04 BAB 2.pdf
Restricted to Registered users only

Download (164kB)
[img] Text (BAB III)
05 BAB 3.pdf
Restricted to Registered users only

Download (141kB)
[img] Text (BAB IV)
06 BAB 4.pdf
Restricted to Registered users only

Download (686kB)
[img] Text (BAB V)
07 BAB 5.pdf
Restricted to Registered users only

Download (139kB)
[img] Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (137kB)
[img] Text (LAMPIRAN)
09 LAMPIRAN.pdf
Restricted to Registered users only

Download (2MB)

Abstract

This study aims to analyze the Naïve Bayes and Support Vector Machine Algorithms (SVM) algorithm for classifying news on the Trusted News website. Training data is obtained from Trusted News Web. An experimental approach is employed to test the performance of the Naïve Bayes and Support Vector Machine Algorithms algorithm in news categorization systems. Text preprocessing involves tokenization, stemming, lemmatization, and the use of the Term Frequency-Inverse Document Frequency (TF-IDF) method for evaluating relevant words. The test results indicate that Naïve Bayes provides better accuracy compared to SVM, with Naïve Bayes reaching a highest accuracy of 88.5%, while SVM's highest accuracy is 79%. Epoch-wise analysis shows consistent performance for Naïve Bayes, whereas Support Vector Machine Algorithms experiences fluctuations. The conclusion of this research affirms that Naïve Bayes can be an effective choice for classifying news on the Trusted News website, contributing to enhancing information security and public trust. Keywords: Naïve Bayes, Support Vector Machine, SVM, Machine Learning. Penelitian ini bertujuan untuk menganalisis algoritma Naïve Bayes dan Support Vector Machine (SVM) dalam klasifikasi berita pada situs web Trusted News. Data pelatihan diperoleh dari situs web Trusted News. Pendekatan eksperimental digunakan untuk menguji kinerja algoritma Naïve Bayes dan Support Vector Machine dalam sistem kategorisasi berita. Pra-pemrosesan teks melibatkan tokenisasi, stemming, lemmatisasi, dan penggunaan metode Term Frequency-Inverse Document Frequency (TF-IDF) untuk mengevaluasi kata-kata yang relevan. Hasil pengujian menunjukkan bahwa Naïve Bayes memberikan akurasi yang lebih baik dibandingkan dengan SVM, dengan Naïve Bayes mencapai akurasi tertinggi sebesar 88,5%, sedangkan akurasi tertinggi SVM adalah 79%. Analisis per epoch menunjukkan kinerja yang konsisten untuk Naïve Bayes, sementara algoritma Support Vector Machine mengalami fluktuasi. Kesimpulan dari penelitian ini menegaskan bahwa Naïve Bayes dapat menjadi pilihan yang efektif untuk mengklasifikasikan berita pada situs web Trusted News, berkontribusi pada peningkatan keamanan informasi dan kepercayaan masyarakat. Kata Kunci: Naïve Bayes, Support Vector Machine, SVM, Machine Learning.

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 24 079
NIM/NIDN Creators: 41518120023
Uncontrolled Keywords: Naïve Bayes, Support Vector Machine, SVM, Machine Learning.
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.7 Multimedia Systems/Sistem-sistem Multimedia > 006.75 Social Multimedia/Multimedia Social > 006.752 Blogs/Blog, Web Blog
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 070 Documentary Media, Educational Media, News Media, Journalism, Publishing/Media Dokumenter, Media Pendidikan, Media Berita, Jurnalisme, Penerbitan > 070.1-070.9 Standard Subdivisions of Documentary Media, Educational Media, News Media, Journalism, Publishing/Subdivisi Standar Dari Media Dokumenter, Media Pendidikan, Media Berita, Jurnalisme, Penerbitan > 070.4 Journalism/Jurnalisme, Jurnalistik, Pers > 070.43 Reporting and News Gathering/Liputan Berita, Laporan dan Pengumpulan Berita > 070.431 News Sources/Sumber Berita
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 510 Mathematics/Matematika > 518 Numerical Analysis/Analisis Numerik, Analisa Numerik > 518.1 Algorithms/Algoritma
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: khalimah
Date Deposited: 04 Apr 2024 03:28
Last Modified: 04 Apr 2024 03:28
URI: http://repository.mercubuana.ac.id/id/eprint/87922

Actions (login required)

View Item View Item