BACHRI, CHRIS MOULANA (2024) DETEKSI EMAIL SPAM MENGGUNAKAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK (CNN). S1 thesis, Universitas Mercu Buana Jakarta.
Text (HAL COVER)
1. Cover.pdf Download (462kB) |
||
|
Text (ABSTRAK)
2. Abstrak.pdf Download (75kB) | Preview |
|
Text (BAB I)
3. BAB 1.pdf Restricted to Registered users only Download (114kB) |
||
Text (BAB II)
4. BAB 2.pdf Restricted to Registered users only Download (335kB) |
||
Text (BAB III)
5. BAB 3.pdf Restricted to Registered users only Download (515kB) |
||
Text (BAB IV)
6. BAB 4.pdf Restricted to Registered users only Download (1MB) |
||
Text (BAB V)
7. BAB 5.pdf Restricted to Registered users only Download (84kB) |
||
Text (DAFTAR PUSTAKA)
8. Daftar Pustaka.pdf Restricted to Registered users only Download (111kB) |
||
Text (LAMPIRAN)
9. Lampiran.pdf Restricted to Registered users only Download (994kB) |
Abstract
This study aims to develop a spam email detection system utilizing the Convolutional Neural Network (CNN) algorithm. The research involved analyzing the text of 5,000 emails in both English and Indonesian to distinguish spam characteristics. The CNN method was employed with data processing that includes text cleansing and tokenization. The results show that the CNN model is effective with high accuracy in classifying emails, proving its potential as a solution for digital security. Keywords: CNN, Email Spam, Computer Science, Text Analysis, Cybersecurity Penelitian ini mengembangkan sistem deteksi email spam berbasis algoritma Convolutional Neural Network (CNN). Penelitian melibatkan analisis teks dari 5000 email berbahasa Inggris dan Indonesia untuk membedakan ciri spam. Metode yang digunakan adalah CNN dengan pengolahan data meliputi pembersihan teks dan Tokenization. Hasil menunjukkan model CNN efektif dengan akurasi tinggi dalam mengklasifikasikan email, membuktikan potensinya sebagai solusi keamanan digital. Kata Kunci: CNN, Email Spam, Teknik Informatika, Analisis Teks, Keamanan Siber.
Actions (login required)
View Item |