HERMAWAN, DICKY SAPUTRA (2024) IMPLEMENTSI ALGORITMA FREQUENT PATTERN GROWTH DAN SIMPLE ADDITIVE WEIGHTING PADA APLIKASI SUPPLY CHAIN MANAGEMENT. S1 thesis, Universitas Mercu Buana Jakarta.
Text (HAL COVER)
01 Cover.pdf Download (208kB) |
|
Text (ABSTRAK)
02 Abstrak.pdf Download (31kB) |
|
Text (BAB I)
03 Bab 1.pdf Restricted to Registered users only Download (44kB) |
|
Text (BAB II)
04 Bab 2.pdf Restricted to Registered users only Download (220kB) |
|
Text (BAB III)
05 Bab 3.pdf Restricted to Registered users only Download (52kB) |
|
Text (BAB IV)
06 Bab 4 .pdf Restricted to Registered users only Download (573kB) |
|
Text (BAB V)
07 Bab 5 .pdf Restricted to Registered users only Download (28kB) |
|
Text (DAFTAR PUSTAKA)
09 Daftar Pustaka.pdf Restricted to Registered users only Download (121kB) |
|
Text (LAMPIRAN)
10 Lampiran.pdf Restricted to Registered users only Download (975kB) |
Abstract
The rapid development of technology in the current era has triggered a transformation in inventory management within companies. Many businesses still rely on manual record-keeping using Microsoft Excel, which is often inefficient and less accurate. This research proposes a solution by developing an inventory control application using the Frequent Pattern Growth (FP Growth) and Simple Additive Weighting (SAW) algorithms. The research aims to improve efficiency, reduce calculation errors, and enhance customer satisfaction through better decision-making in inventory management. Several previous studies have demonstrated the successful implementation of the SAW algorithm in other contexts, such as supplier selection, business location determination, and raw material inventory control. These findings provide support for the continued use of intelligent algorithms in various business aspects. In this study, the SAW algorithm is applied to improve understanding of consumer purchasing patterns and optimize sales, while FP Growth is used for sales transaction analysis to identify relationships between products. The application of the SAW and FP Growth algorithms is expected to contribute positively to operational efficiency, improve inventory management, and optimize sales strategies. The results of this research can serve as a useful reference for other companies looking to enhance their inventory management through the utilization of technology and algorithmic intelligence. Kata Kunci : Prediksi, Metode, FP-Growth, SAW, SCM Perkembangan teknologi yang pesat di era saat ini memicu transformasi dalam manajemen persediaan barang di perusahaan. Banyak perusahaan masih mengandalkan pencatatan manual dengan Microsoft Excel, yang seringkali tidak efisien dan kurang akurat. Penelitian ini mengusulkan solusi dengan mengembangkan aplikasi pengendalian persediaan menggunakan algoritma Frequent Pattern Growth (FP Growth) dan Simple Additive Weighting (SAW). Tujuan penelitian adalah meningkatkan efisiensi, mengurangi kesalahan perhitungan, dan memperbaiki kepuasan konsumen melalui pengambilan keputusan yang lebih baik terkait manajemen stok barang. Beberapa penelitian sebelumnya telah menunjukkan keberhasilan implementasi algoritma SAW dalam konteks lain, seperti pemilihan supplier, penentuan lokasi usaha, dan pengendalian persediaan bahan baku. Hasil-hasil tersebut memberikan dukungan terhadap keberlanjutan penggunaan algoritma cerdas dalam berbagai aspek bisnis. Dalam penelitian ini, algoritma SAW diterapkan untuk meningkatkan pemahaman pola pembelian konsumen dan mengoptimalkan penjualan, sementara FP Growth digunakan untuk analisis transaksi penjualan guna mengidentifikasi hubungan antar produk. Penerapan algoritma SAW dan FP Growth diharapkan dapat memberikan kontribusi positif terhadap efisiensi operasional perusahaan, meningkatkan pengelolaan persediaan, dan mengoptimalkan strategi penjualan. Hasil penelitian ini dapat menjadi acuan bermanfaat bagi perusahaan lain yang ingin meningkatkan manajemen persediaan mereka melalui pemanfaatan teknologi dan kecerdasan algoritma. Kata Kunci : Prediksi, Metode, FP-Growth, SAW, SCM
Actions (login required)
View Item |