PENGENALAN SETENGAH WAJAH MENGGUNAKAN ARSITEKTUR XCEPTION PADA METODE CONVOLUTIONAL NEURAL NETWORK

SUBEKI, FAJAR (2024) PENGENALAN SETENGAH WAJAH MENGGUNAKAN ARSITEKTUR XCEPTION PADA METODE CONVOLUTIONAL NEURAL NETWORK. S1 thesis, Universitas Mercu Buana Jakarta.

[img] Text (HAL COVER)
01 Cover.pdf

Download (455kB)
[img] Text (ABSTRAK)
02 Abstrak.pdf

Download (83kB)
[img] Text (BAB I)
03 Bab 1.pdf
Restricted to Registered users only

Download (81kB)
[img] Text (BAB II)
04 Bab 2.pdf
Restricted to Registered users only

Download (209kB)
[img] Text (BAB III)
05 Bab 3.pdf
Restricted to Registered users only

Download (116kB)
[img] Text (BAB IV)
06 Bab 4.pdf
Restricted to Registered users only

Download (1MB)
[img] Text (BAB V)
07 Bab 5.pdf
Restricted to Registered users only

Download (33kB)
[img] Text (DAFTAR PUSTAKA)
08 Daftar Pustaka.pdf
Restricted to Registered users only

Download (95kB)
[img] Text (LAMPIRAN)
09 Lampiran.pdf
Restricted to Registered users only

Download (2MB)

Abstract

Facial recognition is a method of identifying an individual by using their face. It has become a technology widely used in various applications to verify a person's identity by comparing their facial features with stored facial data. This research aims to recognize individuals based on their facial features, specifically focusing on the upper half of the face in conditions where only this portion is accessible or visible. The study utilizes the Xception architecture in the Convolutional Neural Network (CNN) method, which can extract complex features from facial data, particularly focusing on the upper half of the face, including the forehead, eyebrows, and eyes. The research is conducted using attendance data of employees, consisting of 1020 datasets of the upper half of the face from various employees and 114 datasets of faces with masks. The results of the study involve four scenarios of dataset division, demonstrating the model's ability to accurately recognize faces. The best-performing scenario achieved an accuracy of 95%, precision of 96%, recall of 96%, and an F1-score of 95%. These metrics showcase the effectiveness of the model in accurately identifying individuals based on the upper half of their faces, even in scenarios where masks are worn. Keywords: Face Recognition, Half-Face, Xception, Convolutional Neural Network (CNN) Pengenalan wajah adalah suatu cara mengidentifikasi identitas seseorang menggunakan wajahnya. Pengenalan wajah menjadi suatu teknologi yang sering digunakan di berbagai kebutuhan untuk memverifikasi identitas seseorang apakah cocok dengan data wajah yang dimiliki. Penelitian ini bertujuan untuk mengenali seseorang dengan wajah yang dimiliki di dalam kondisi hanya setengah bagian wajah yang dapat diakses atau terlihat yaitu menggunakan setengah wajah bagian atas. Penelitian ini menggunakan arsitektur Xception pada Metode Convolutional Neural Network (CNN) yang dapat mengekstraksi fitur kompleks dari data wajah khususnya pada setengah wajah bagian atas mulai dari dahi, alis dan mata. Penelitian ini dilakukan menggunakan data absensi karyawan yang berisi 1020 dataset setengah wajah bagian atas dari berbagai karyawan dan 114 dataset wajah menggunakan masker. Hasil penelitian ini menggunakan 4 (empat) skenario pembagian dataset yang dapat mampu mengenali wajah seseorang dengan akurat dengan performance measure model dari skenario terbaik yaitu accuracy 95%, precission 96%, recall 96% dan f1-score 95%. Kata kunci : Pengenalan Wajah, Setengah Wajah, Xception, Convolutional Neural Network (CNN)

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 24 002
Call Number: SIK/15/24/002
NIM/NIDN Creators: 41519120052
Uncontrolled Keywords: Pengenalan Wajah, Setengah Wajah, Xception, Convolutional Neural Network (CNN)
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.3 Artificial Intelligence/Kecerdasan Buatan > 006.32 Neural Nets (Neural Network)/Jaringan Saraf Buatan
100 Philosophy and Psychology/Filsafat dan Psikologi > 150 Psychology/Psikologi > 153 Conscious Mental Process and Intelligence/Intelegensia, Kecerdasan Proses Intelektual dan Mental > 153.1 Memory and Learning/Memori dan Pembelajaran > 153.12 Memory/Memori > 153.124 Recognition/Pengenalan
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: khalimah
Date Deposited: 10 Jan 2024 07:03
Last Modified: 10 Jan 2024 07:03
URI: http://repository.mercubuana.ac.id/id/eprint/85226

Actions (login required)

View Item View Item