PREDIKSI TRANSAKSI PENJUALAN PRODUK PADA DATA TIME SERIES MENGGUNAKAN LSTM DALAM MENGESTIMASI PERSEDIAAN PRODUK

UTAMA, GUNAWAN ABDI PUTRA (2021) PREDIKSI TRANSAKSI PENJUALAN PRODUK PADA DATA TIME SERIES MENGGUNAKAN LSTM DALAM MENGESTIMASI PERSEDIAAN PRODUK. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 Cover.pdf

Download (1MB) | Preview
[img] Text (BAB I)
02 Bab 1.pdf
Restricted to Registered users only

Download (188kB)
[img] Text (BAB II)
03 Bab 2.pdf
Restricted to Registered users only

Download (297kB)
[img] Text (BAB III)
04 Bab 3.pdf
Restricted to Registered users only

Download (74kB)
[img] Text (BAB V)
06 Bab 5.pdf
Restricted to Registered users only

Download (548kB)
[img] Text (BAB VI)
07 Bab 6.pdf
Restricted to Registered users only

Download (212kB)
[img] Text (BAB VII)
08 Bab 7.pdf
Restricted to Registered users only

Download (71kB)
[img] Text (DAFTAR PUSTAKA)
Daftar Pustaka.pdf
Restricted to Registered users only

Download (236kB)
[img] Text (LAMPIRAN)
Lampiran.pdf
Restricted to Registered users only

Download (606kB)

Abstract

Predicting product sales is one way to maintain sales stability. Market conditions and demands that are increasingly complex and unpredictable make companies have to plan the right business strategy, including through prediction of product demand or sales. The prediction results obtained can be used as a consideration for making decisions and planning the right business strategy. In this study, a prediction trial was carried out using machine learning techniques with the Long Short-Term Memory (LSTM) method, to test the proposed technique using a sales dataset of 5 products with a performance parameter of Root Mean Squared Error (RMSE), the sequential testing data value was 0.22. , 0.23, 0.30, 0.09, 0.34. where the smaller the error rate generated, the more precise the method used in predicting. Key words : Machine Learning, Long Short-Term Memory, Prediction, Sales Prediksi penjualan produk merupakan salah satu cara dalam menjaga kestabilan penjualan. Kondisi dan permintaan pasar yang semakin kompleks dan sulit diprediksi membuat perusahaan harus merencanakan strategi bisnis yang tepat, di antaranya termasuk melalui prediksi permintaan atau penjualan produk. Hasil prediksi yang diperoleh dapat digunakan sebagai pertimbangan pengambilan keputusan dan perencanaan strategi bisnis yang tepat. Dalam penelitian ini dilakukan uji coba prediksi menggunakan teknik machine learning dengan metode Long Short-Term Memory (LSTM), untuk menguji coba teknik yang diusulkan menggunakan dataset penjualan 5 produk dengan parameter kinerja Root Mean Squared Error (RMSE) didapatkan nilai data testing berurut yaitu 0.22, 0.23, 0.30, 0.09, 0.34. di mana semakin kecil tingkat kesalahan yang dihasilkan akan semakin tepat metode yang digunakan dalam memprediksi. Kata kunci : Machine Learning, Long Short-Term Memory, Prediction, Sales

Item Type: Thesis (S1)
NIM/NIDN Creators: 41516120093
Uncontrolled Keywords: Machine Learning, Long Short-Term Memory, Prediction, Sales
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika > 004.6 Interfacing and Communications/Tampilan Antar Muka (Interface) dan Jaringan Komunikasi Komputer > 004.62 Interfacing and Communications Protocols (Standards)/Tampilan Antarmuka dan Protokol Komunikasi (Standar)
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: Dede Muksin Lubis
Date Deposited: 27 Oct 2023 07:39
Last Modified: 27 Oct 2023 07:39
URI: http://repository.mercubuana.ac.id/id/eprint/83416

Actions (login required)

View Item View Item