FAUZI, MUHAMMAD (2023) SISTEM PAKAR DIAGNOSA KERUSAKAN MOTOR MATIC INJEKSI BERBASIS WEB MENGGUNAKAN METODE CERTAINTY FACTOR. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (COVER)
01 COVER.pdf Download (552kB) | Preview |
|
|
Text (ABSTRAK)
02 ABSTRAK.pdf Download (26kB) | Preview |
|
Text (BAB I)
03 BAB 1.pdf Restricted to Registered users only Download (76kB) |
||
Text (BAB II)
04 BAB 2.pdf Restricted to Registered users only Download (140kB) |
||
Text (BAB III)
05 BAB 3.pdf Restricted to Registered users only Download (149kB) |
||
Text (BAB IV)
06 BAB 4.pdf Restricted to Registered users only Download (1MB) |
||
Text (BAB V)
07 BAB 5.pdf Restricted to Registered users only Download (61kB) |
||
Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf Restricted to Registered users only Download (160kB) |
||
Text (LAMPIRAN)
09 LAMPIRAN.pdf Restricted to Registered users only Download (226kB) |
Abstract
Motorcycles are a popular means of transportation in Indonesian society, but many motorcyclists do not know the condition of their own motorbikes. The creation of motor damage detection technology must be sought seriously, so that it can make it easier for motorbike owners to identify damage to their motorbikes from the start. The purpose of this expert system is to help the owner find out the damage to the motorcycle and can take action before being followed up by the workshop. Previous research was built by applying the Forward Chaining method which consists of several stages, namely looking for experts according to the system theme, hypothesis data, premise data, rule data, and calculating based on the Forward Chaining rule formula. However, this method has shortcomings in evaluating data on injection matic motor damage, such as concluding a problem based on facts that have no certainty and uncertainty value in analyzing an injection matic motor damage data. Therefore, in this study, we propose to build an expert system called the Certainty Factor-Based Expert System (SPB-CF) using the Certainty Factor method. This method consists of several stages: (1) Compilation of data on damage to the injection matic motor and types of symptoms in the form of a rule. (2) Giving the confidence value for each symptom. (3) Input symptom data from the user based on the certainty value. (4) Calculate based on the Certainty Factor rule formula. (5) Obtain the results of the percentage of the type of motor matic injection damage problems. The results of this study conclude that Certainty Factory is more effective in solving a problem and has greater accuracy than the Forward Chaining method. Keywords: Expert system, Injection automatic motor, Certainty Factor Sepeda motor merupakan alat tranportasi yang populer di masyarakat Indonesia, namun banyak pengendara sepeda motor yang tidak mengetahui kondisi sepeda motornya sendiri. Penciptaan teknologi pendeteksi kerusakan motor harus dicari secara serius, sehingga dapat memudahkan pemilik motor untuk mengidentifikasi kerusakan motornya sejak awal. Tujuan dari sistem pakar ini adalah membantu pemilik dapat mengetahui kerusakan pada sepeda motor dan dapat melakukan tindakan sebelum ditindak lanjuti oleh bengkel. Penelitian sebelumnya dibangun dengan menerapkan metode Forward Chaining yang terdiri dari beberapa tahapan yaitu mencari pakar yang sesuai dengan tema sistem, data hipotesa, data premis, data rule, dan menghitung berdasarkan rumus rule Forward Chaining. Akan tetapi metode tersebut memiliki kekurangan dalam melakukan evaluasi data terhadap kerusakan motor matic injeksi, seperti menyimpulkan suatu masalah yang berdasarkan fakta yang tidak memiliki nilai kepastian dan tidak kepastian dalam menganalisa suatu data kerusakan motor matic injeksi. Oleh karena itu, dalam penelitian ini kami mengusulkan untuk membangun sebuah sistem pakar yang bernama Sistem Pakar Berbasis Certainty Factor (SPB-CF) dengan menggunakan metode Certainty Factor. Metode ini terdiri dari beberapa tahapan : (1) Penyusunan data kerusakan motor matic injeksi dan jenis gejala dalam bentuk rule. (2) Pemberian nilai keyakinan setiap gejala. (3) Input data gejala dari user berdasarkan nilai kepastian. (4) Menghitung berdasarkan rumus rule Certainty Factor. (5) Memperoleh hasil presentase jenis masalah kerusakan motor matic injeksi. Hasil dari penelitian ini menyimpulkan bahwa Certainty Factory lebih efektif dalam memecahkan sebuah masalah dan memiliki hasil akurasi yang lebih besar dibandingkan metode Forward Chaining. Kata Kunci : Sistem pakar, Motor matic injeksi, Certainty Factor
Actions (login required)
View Item |