ANALISIS PERBANDINGAN ALGORITMA CLUSTERING DBSCAN DENGAN SNN UNTUK PEMETAAN DAERAH PENYEBARAN COVID19 DI DKI JAKARTA

KKHOSASIH, ADAM MAULANA (2021) ANALISIS PERBANDINGAN ALGORITMA CLUSTERING DBSCAN DENGAN SNN UNTUK PEMETAAN DAERAH PENYEBARAN COVID19 DI DKI JAKARTA. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVER.pdf

Download (1MB) | Preview
[img] Text (BAB I)
02 BAB 1.pdf
Restricted to Registered users only

Download (125kB)
[img] Text (BAB II)
03 BAB 2.pdf
Restricted to Registered users only

Download (116kB)
[img] Text (BAB III)
04 BAB 3.pdf
Restricted to Registered users only

Download (50kB)
[img] Text (BAB IV)
05 BAB 4.pdf
Restricted to Registered users only

Download (167kB)
[img] Text (BAB V)
06 BAB 5.pdf
Restricted to Registered users only

Download (108kB)
[img] Text (DAFTAR PUSTAKA)
07 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (168kB)
[img] Text (LAMPIRAN)
08 LAMPIRAN.pdf
Restricted to Registered users only

Download (276kB)

Abstract

Covid-19 is a disease that attacks the respiratory tract, causing high fever, cough, flu, shortness of breath and sore throat. With the increasingly widespread spread of Covid-19 in various regions, especially in the DKI Jakarta Province, this has led to the issuance of a Large-Scale Social Restriction (PSBB) policy in each region. To prevent the spread of COVID-19, especially in the DKI Jakarta Province, mapping the causes of COVID-19 is needed. The purpose of this study is to compare the DBSCAN clustering algorithm with Shared Nearest Neighbor in identifying the area of the spread of COVID-19 in DKI Jakarta Province. From the two algorithms, it can be concluded that the DBSCAN Algorithm can be better used to map the area of the spread of COVID-19 in DKI Jakarta Province, with validation results using the Dunn Index of 0.99, while the SNN is 0.95. The results of profiling the spread of COVID-19 in the DKI Jakarta Province area were obtained from the DBSCAN Algorithm with 2 clusters, namely vurnerable and alert clusters. Key words: Covid-19, Clustering, DBSCAN, SNN Covid-19 merupakan penyakit yang menyerang saluran pernafasan sehingga menyebabkan demam tinggi, batuk, flu, sesak nafas serta nyeri tenggorokan. Dengan semakin meluasnya penyebaran Covid-19 di berbagai wilayah, khususnya di wilayah Provinsi DKI Jakarta, menyebabkan keluarnya kebijakan Pembatasan Sosial Berskala Besar (PSBB) di setiap wilayahnya. Untuk mencegah penyebaran COVID-19, khususnya diwilayah Provinsi DKI Jakarta, dibutuhkanya pemetaan penyebarah COVID-19. Tujuan dari penelitian ini adalah untuk membandingkan antara Algoritma clustering DBSCAN dengan Shared Nearest Neighbor dalam mengidentifikasi area penyebaran COVID-19 di Provinsi DKI Jakarta. Dari kedua algoritma tersebut dapat disimpulkan bahwa Algoritma DBSCAN dapat lebih baik digunakan untuk memetakan daerah penyebaran COVID-19 di Provinsi DKI Jakarta, dengan hasil validasi menggunakan Dunn Index sebesar 0,99, sedangkan SNN sebesar 0,95. Hasil profiling penyebaran COVID-19 di wilayah Provinsi DKI Jakarta yang didapat dari Algoritma DBSCAN dengan jumlah cluster sebanyak 2 yaitu, cluster rawan dan waspada. Kata kunci: Covid-19, Clustering, DBSCAN, SNN

Item Type: Thesis (S1)
NIM/NIDN Creators: 41517010099
Uncontrolled Keywords: Covid-19, Clustering, DBSCAN, SNN
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: ASHAIDAH AZLYA PUTRI
Date Deposited: 11 Oct 2023 07:02
Last Modified: 11 Oct 2023 07:02
URI: http://repository.mercubuana.ac.id/id/eprint/82337

Actions (login required)

View Item View Item