VIADI, DIZ YODIANANDA (2023) Penerapan Data Mining Untuk Memprediksi Hasil Analisa Stability Test Wafer Pada PT Ultra Prima Abadi Menggunakan Algoritma C4.5 dan Regresi Linear. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (COVER)
01 COVER.pdf Download (469kB) | Preview |
|
|
Text (ABSTRAK)
02 ABSTRAK.pdf Download (26kB) | Preview |
|
Text (BAB I)
03 BAB 1.pdf Restricted to Registered users only Download (40kB) |
||
Text (BAB II)
04 BAB 2.pdf Restricted to Repository staff only Download (145kB) |
||
Text (BAB III)
05 BAB 3.pdf Restricted to Registered users only Download (44kB) |
||
Text (BAB IV)
06 BAB 4.pdf Restricted to Registered users only Download (688kB) |
||
Text (BAB V)
07 BAB 5.pdf Restricted to Registered users only Download (20kB) |
||
Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf Restricted to Registered users only Download (187kB) |
||
Text (LAMPIRAN)
09 LAMPIRAN.pdf Restricted to Registered users only Download (857kB) |
Abstract
The research initiated this time uses the C4.5 algorithm and linear regression to be able to predict the results of the wafer stability test analysis at PT Ultra Prima Abadi to ensure the quality and purity of products that are already on the market so that they are safe for consumption. This study aims to apply data mining to predict the results of wafer stability test analysis at PT Ultra Prima Abadi using the C 4.5 algorithm and predict the sample stock available for analysis at PT Ultra Prima Abadi using linear regression. The method used in this study uses the prediction method. The results obtained use Google Colab calculations. The results of the research that has been carried out to predict the results of the wafer stability test analysis at PT Ultra Prima Abadi, obtained a graph showing the most products that came out during the sales period from January 2020 to November 2022, namely export sample products, therefore from this research PT Ultra Prima Abadi must maximize the stock of export samples. In this study, the parameters MAE (Mean absolute error), MSE (mean squared error) and R2 score were used. The test scenario uses the linear regression algorithm and C 4.5 with the MAE, MSE, and R2 Score parameters to get standard results. Key words : data mining, prediction, C 45, regresi linear Penelitian yang digagas kali ini menggunakan algoritma C4.5 dan regresi linear untuk dapat memprediksi hasil analisa stability test wafer pada PT Ultra Prima Abadi guna memastikan kualitas dan kemurnian produk yang telah beredar di pasaran sehingga aman di konsumsi. Penelitian ini bertujuan untuk menerapkan data mining dalam memprediksi hasil analisa stability test wafer pada PT Ultra Prima Abadi menggunakan algoritma C 4.5 dan memprediksi stok sampel yang tersedia untuk dianalisa pada PT Ultra Prima Abadi menggunakan regresi linear. Metode yang digunakan pada penelitian ini menggunakan metode prediksi. Hasil yang didaptkan menggunakan perhitungan Google Colab. Hasil penelitian yang telah dilakukan untuk memprediksi hasil analisa stability test wafer pada PT Ultra Prima Abadi, didapatkan grafik yang menunjukan produk yang paling banyak keluar selama periode penjualan bulan Januari 2020 sampai November 2022 yaitu produk sampel export, karena itu dari penelitan ini PT Ultra Prima Abadi harus memaksimalkan stok sampel export. Pada penelitian menggunakan parameter MAE (Mean Absolute Error), MSE (Mean Squared Error) dan R2 score. Skenario pengujian menggunakan algoritma regresi linear dan C 4.5 dengan parameter MAE, MSE, dan R2 Score mendapatkan hasil yang standar. Kata kunci : data mining, prediksi, C 45, regresi linear
Actions (login required)
View Item |