KOMPARASI ALGORITMA NA�VE BAYES DAN K-NEAREST NEIGHBOR UNTUK KLASIFIKASI PRIORITAS KEBUTUHAN PENGANGGURAN DI SURABAYA

KHAIRUNNISA, NIKA RULLYTA (2023) KOMPARASI ALGORITMA NA�VE BAYES DAN K-NEAREST NEIGHBOR UNTUK KLASIFIKASI PRIORITAS KEBUTUHAN PENGANGGURAN DI SURABAYA. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (COVER)
01 COVER.pdf

Download (645kB) | Preview
[img]
Preview
Text (ABSTRAK)
02 ABSTRAK.pdf

Download (26kB) | Preview
[img] Text (BAB I)
03 BAB 1.pdf
Restricted to Registered users only

Download (40kB)
[img] Text (BAB II)
04 BAB 2.pdf
Restricted to Registered users only

Download (206kB)
[img] Text (BAB III)
05 BAB 3.pdf
Restricted to Registered users only

Download (205kB)
[img] Text (BAB IV)
06 BAB 4.pdf
Restricted to Registered users only

Download (420kB)
[img] Text (BAB V)
07 BAB 5.pdf
Restricted to Registered users only

Download (19kB)
[img] Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (244kB)
[img] Text (LAMPIRAN)
09 LAMPIRAN.pdf
Restricted to Registered users only

Download (1MB)

Abstract

Indonesia is a developing country that is striving to address the issue of poverty. One of the factors contributing to poverty is high unemployment rates. The province of East Java has the highest number of people living in poverty, with around 4.6 million individuals as of March 2021. Surabaya, a city in East Java, has the highest Tingkat Pengangguran Terbuka (TPT) with a percentage of 9.68% in 2021. In this study, the researcher conducted a classification using the Naïve Bayes and K-Nearest Neighbor algorithms to identify the priority needs between jobs or assistance among the unemployed individuals in Surabaya. The high accuracy rates achieved through the implementation of Naïve Bayes and KNearest Neighbor algorithms demonstrate their effectiveness in determining the priority needs of the unemployed individuals in Surabaya. The accuracy rates of the implemented algorithms were 95% (0.954) for Naïve Bayes and 97% (0.968) for K-Nearest Neighbor. It is worth noting that the K-Nearest Neighbor algorithm outperformed the Naïve Bayes algorithm in classifying the unemployment data in Surabaya. However, both algorithms exhibited good accuracy and did not show significant differences in performance. Keywords : Unemployed, Priority Needs, Classification, Naïve Bayes, K-Nearest Neighbor Indonesia merupakan salah satu negara berkembang yang sedang berusaha mengatasi masalah kemiskinan. Salah satu faktor penyebab kemiskinan adalah tingkat pengangguran yang tinggi. Jawa Timur adalah provinsi dengan jumlah penduduk miskin terbanyak, yaitu sekitar 4,6 juta jiwa pada bulan Maret 2021 dengan Tingkat Pengangguran Terbuka (TPT) tertinggi di Surabaya berdasarkan kota yang memiliki persentase sebesar 9,68% pada tahun 2021. Dalam penelitian ini, peneliti melakukan klasifikasi menggunakan algoritma Naïve Bayes dan KNearest Neighbor untuk mengidentifikasi kebutuhan prioritas dalam pekerjaan atau bantuan bagi para pengangguran di Surabaya. Tingkat akurasi dari algoritma yang digunakan nantinya akan menunjukkan efektivitas dalam menentukan kebutuhan prioritas. Hasil implementasi kedua algoritma tersebut menunjukkan akurasi sebesar 95% (0,954) untuk Naïve Bayes dan 97% (0,968) untuk K-Nearest Neighbor. Algoritma K-Nearest Neighbor memberikan performa lebih baik daripada algoritma Naïve Bayes dalam mengklasifikasi data pengangguran di Surabaya. Namun, keduanya memberikan akurasi yang baik dan tidak memiliki perbedaan yang signifikan. Kata Kunci : Pengangguran, Kebutuhan Prioritas, Klasifikasi, Naïve Bayes, K-Nearest Neighbor

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 23 093
NIM/NIDN Creators: 41519010130
Uncontrolled Keywords: Pengangguran, Kebutuhan Prioritas, Klasifikasi, Naïve Bayes, K-Nearest Neighbor
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 003 Systems/Sistem-sistem
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 003 Systems/Sistem-sistem > 003.5 Computer Modeling and Simulation/Model dan Simulasi Komputer
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: CALVIN PRASETYO
Date Deposited: 22 Sep 2023 02:38
Last Modified: 22 Sep 2023 02:38
URI: http://repository.mercubuana.ac.id/id/eprint/81349

Actions (login required)

View Item View Item