ANDRIANI, RENI IKA (2023) KLASIFIKASI DETEKSI BANJIR BERBASIS INTERNET OF THINGS (IOT) DENGAN METODE FUZZY. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (COVER)
01 COVER.pdf Download (410kB) | Preview |
|
|
Text (ABSTRAK)
02 ABSTRAK.pdf Download (111kB) | Preview |
|
Text (BAB I)
03 BAB 1.pdf Restricted to Registered users only Download (185kB) |
||
Text (BAB II)
04 BAB 2.pdf Restricted to Registered users only Download (396kB) |
||
Text (BAB III)
05 BAB 3.pdf Restricted to Registered users only Download (292kB) |
||
Text (BAB IV)
06 BAB 4.pdf Restricted to Registered users only Download (541kB) |
||
Text (BAB V)
07 BAB 5.pdf Restricted to Registered users only Download (154kB) |
||
Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf Restricted to Registered users only Download (192kB) |
Abstract
High rainfall during the rainy season can cause continuous rainfall and increase air volume, increasing the potential for flooding. However, the community does not always receive information directly about the potential for flooding. The results of the sensor data acquisition process will then be processed with fuzzy artificial intelligence embedded in Arduino. Internet of things (IoT) based flood early warning system. To overcome this problem, an Internet of Things (IoT) based flood detection classification with a fuzzy method was designed. This system works by detecting the distance between the air surface and the sensor. If the water level approaches the sensor, the system will give a warning in the form of a siren as a sign of impending flooding. This system also provides alert status and water level information in real time. From the test results using 100 air surface distance data with ultrasonic sensors, there were 6 distance reading errors. In addition, this system can store all air surface distance data into the database during testing using different air surface distances to the sensor. Keywords: Flood, Internet of Things (IoT), Fuzzy Logic, Early Detection, Classification. Curah hujan yang tinggi pada musim penghujan dapat menyebabkan curah hujan berlangsung secara terus-menerus dan meningkatkan volume air, meningkatkan potensi banjir. Namun, masyarakat tidak selalu menerima informasi langsung mengenai potensi banjir ini. Hasil dari proses akuisisi data sensor kemudian akan diproses dengan kecerdasan buatan fuzzy yang ditanamkan pada arduino. Sistem peringatan dini banjir berbasis internet of things (IoT).Untuk mengatasi permasalahan ini, dirancang sebuah Klasifikasi deteksi banjir berbasis Internet of Things (IoT) dengan metode fuzzy. Sistem ini bekerja dengan mendeteksi jarak antara permukaan air dan sensor. Jika jarak permukaan air mendekati sensor, sistem akan memberikan peringatan berupa bunyi sirine sebagai tanda akan terjadinya banjir. Sistem ini juga menyajikan status siaga dan informasi jarak permukaan air secara realtime. Dari hasil pengujian menggunakan 100 data jarak permukaan air dengan sensor ultrasonik, terdapat 6 kesalahan pembacaan jarak. Selain itu, sistem ini dapat menyimpan semua data jarak permukaan air ke dalam database selama pengujian menggunakan berbagai jarak permukaan air yang berbeda dengan sensor. Kata kunci: Banjir, Internet of Things (IoT), Fuzzy Logic, Deteksi Dini, Klasifikasi.
Item Type: | Thesis (S1) |
---|---|
Call Number CD: | FT/ELK. 23 110 |
NIM/NIDN Creators: | 41419110010 |
Uncontrolled Keywords: | Banjir, Internet of Things (IoT), Fuzzy Logic, Deteksi Dini, Klasifikasi. |
Subjects: | 600 Technology/Teknologi > 620 Engineering and Applied Operations/Ilmu Teknik dan operasi Terapan > 621 Applied Physics/Fisika terapan 600 Technology/Teknologi > 620 Engineering and Applied Operations/Ilmu Teknik dan operasi Terapan > 621 Applied Physics/Fisika terapan > 621.3 Electrical Engineering, Lighting, Superconductivity, Magnetic Engineering, Applied Optics, Paraphotic Technology, Electronics Communications Engineering, Computers/Teknik Elektro, Pencahayaan, Superkonduktivitas, Teknik Magnetik, Optik Terapan, Tekn |
Divisions: | Fakultas Teknik > Teknik Elektro |
Depositing User: | CALVIN PRASETYO |
Date Deposited: | 16 Sep 2023 02:54 |
Last Modified: | 16 Sep 2023 02:54 |
URI: | http://repository.mercubuana.ac.id/id/eprint/80986 |
Actions (login required)
View Item |