NURIADI, MUHAMAD BAYU (2023) PERBANDINGAN ALGORITMA SVM, NA�VE BAYES, DAN RANDOM FOREST UNTUK ANALISIS SENTIMEN TWITTER MENJELANG PEMILU 2024. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (COVER)
01 COVER.pdf Download (308kB) | Preview |
|
|
Text (ABSTRAK)
02 ABSTRAK.pdf Download (108kB) | Preview |
|
Text (BAB I)
03 BAB 1.pdf Restricted to Registered users only Download (170kB) |
||
Text (BAB II)
04 BAB 2.pdf Restricted to Registered users only Download (342kB) |
||
Text (BAB III)
05 BAB 3.pdf Restricted to Registered users only Download (217kB) |
||
Text (BAB IV)
06 BAB 4.pdf Restricted to Registered users only Download (1MB) |
||
Text (BAB V)
07 BAB 5.pdf Restricted to Registered users only Download (116kB) |
||
Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf Restricted to Registered users only Download (255kB) |
||
Text (LAMPIRAN)
09 LAMPIRAN.pdf Restricted to Registered users only Download (2MB) |
Abstract
In the era of rapid development of information and communication technology, online information spreads quickly among the public. In the context of the 2024 elections, it is important to conduct political education to avoid the spread of information that is not true and has the potential to cause division. Therefore, this research uses machine learning algorithms to classify sentiment analysis of positive and negative comments on Twitter. The tweet comment data is taken through the crawling process on Twitter and through preprocessing to get accurate results. SVM, Naive Bayes, and Random Forest algorithms are used in data testing, and the results are displayed in the form of visualizations. The results show that the SVM algorithm has the highest accuracy (89%), followed by Random Forest (85%) and Naive Bayes (84%). Keyword : Sentiment Analysis, Indonesian General Election 2024, Machine Learning, Twitter Dalam era perkembangan teknologi informasi dan komunikasi yang pesat, informasi Online menyebar dengan cepat di kalangan masyarakat. Dalam konteks pelaksanaan Pemilu 2024, penting untuk melakukan pendidikan politik guna menghindari penyebaran informasi yang tidak benar dan berpotensi menyebabkan perpecahan. Oleh karena itu, penelitian ini menggunakan algoritma machine learning untuk mengklasifikasikan analisis sentimen terhadap komentar positif dan negatif di Twitter. Data komentar tweet diambil melalui proses crawling di Twitter dan melalui preprocessing untuk mendapatkan hasil yang akurat. Algoritma SVM, Naive Bayes, dan Random Forest digunakan dalam pengujian data, dan hasilnya ditampilkan dalam bentuk visualisasi. Hasil penelitian menunjukkan bahwa algoritma SVM memiliki akurasi tertinggi (89%), diikuti oleh Random Forest (85%) dan Naive Bayes (84%). Kata Kunci : Analisis Sentimen, Pemilu 2024, Machine Learning, Twitter
Actions (login required)
View Item |