NURTAMA, RIDHO ADITYA (2023) Perbandingan Performa Algoritma Machine Learning untuk Analisis Sentimen Kebijakan Kominfo pada Twitter. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (COVER)
01 Cover.pdf Download (636kB) | Preview |
|
|
Text (ABSTRAK)
02 Abstrak.pdf Download (236kB) | Preview |
|
Text (BAB I)
03 Bab 1.pdf Restricted to Registered users only Download (388kB) |
||
Text (BAB II)
04 Bab 2.pdf Restricted to Registered users only Download (414kB) |
||
Text (BAB III)
05 Bab 3.pdf Restricted to Registered users only Download (326kB) |
||
Text (BAB IV)
06 Bab 4.pdf Restricted to Registered users only Download (856kB) |
||
Text (BAB V)
07 Bab 5.pdf Restricted to Registered users only Download (261kB) |
||
Text (DAFTAR PUSTAKA)
08 Daftar Pustaka.pdf Restricted to Registered users only Download (296kB) |
||
Text (LAMPIRAN)
09 Lampiran.pdf Restricted to Registered users only Download (1MB) |
Abstract
PSE policy is a policy made by the Ministry of Communication and Information Technology (Kominfo) to all digital service providers in Indonesia. This rule was made to create a safe and healthy internet. However, on July 30, 2022, Kominfo conducted a mass blocking of digital platforms that did not register PSE such as Steam, Epic Games Store to Paypal, this reaped pros and cons in the community and became a trending topic on platforms such as Twitter. Many Twitter users in Indonesia gave opinions and commented on this case. Therefore, a sentiment analysis was conducted on the case of the PSE policy issued by Kominfo. The data is taken from public comments regarding responses to this PSE policy on Twitter, in the form of positive and negative comments. This research also aims to compare which algorithms are effective in sentiment analysis in this case, including Support Vector Machine (SVM), Random Forest, and Decision Tree. In this case the Support Vector Machine (SVM) algorithm gets the greatest classification results by producing an accuracy value of 84.25%, followed by the Decision Tree algorithm by getting an accuracy value of 78.17%, and the Support Vector Machine (SVM) algorithm gets an accuracy value of 73.46%. Kata Kunci: Sentiment Analysis, PSE Policy, Kominfo, Support Vector Machine, Random Forest, Decision Tree Kebijakan PSE merupakan kebijakan yang dibuat oleh Kementerian Komunikasi dan Informatika (Kominfo) kepada seluruh penyedia layanan digital di Indonesia. Aturan ini dibuat untuk bertujuan menciptakan internet yang aman dan sehat. Namun pada tanggal 30 Juli 2022, Kominfo melakukan pemblokiran massal pada platform digital yang tidak mendaftar PSE seperti Steam, Epic Games Store hingga Paypal, hal ini menuai pro kontra pada masyarakat dan menjadi trending topik pada platform seperti Twitter. Banyak pengguna Twitter di Indonesia yang memberikan pendapat dan berkomentar tentang kasus ini. Oleh karena itu, dilakukan analisis sentimen pada kasus kebijakan PSE yang dikeluarkan oleh Kominfo. Data diambil dari komentar masyarakat mengenai tanggapan pada kebijakan PSE ini di Twitter, berupa komentar positif dan negatif. Penelitian ini juga bertujuan untuk membandingkan algoritma mana yang efektif dalam analisis sentimen pada kasus ini, diantaranya Support Vector Machine (SVM), Random Forest, dan Decision Tree. Pada kasus ini algoritma Support Vector Machine (SVM) mendapatkan hasil klasifikasi yang paling besar dengan menghasilkan nilai akurasi sebesar 84.25%, disusul dengan algoritma Random Forest dengan mendapatkan nilai akurasi sebesar 78.17%, dan algoritma Decision Tree mendapatkan nilai akurasi sebesar 73.46%. Kata Kunci: Analisis Sentimen, Kebijakan PSE, Kominfo, Support Vector Machine, Random Forest, Decision Tree
Actions (login required)
View Item |