PREDIKSI TEMPERATUR CUACA DI NEGARA NORWEGIA MENGGUNAKAN METODE LSTM

HIDAYATULLAH, SYARIF (2023) PREDIKSI TEMPERATUR CUACA DI NEGARA NORWEGIA MENGGUNAKAN METODE LSTM. S1 thesis, Universitas Mercu Buana Jakarta.

[img] Text (COVER)
1. Hal Cover.pdf

Download (373kB)
[img] Text (ABSTRAK)
2. Abstrak.pdf

Download (76kB)
[img] Text (BAB I)
3. BAB I.pdf
Restricted to Registered users only

Download (53kB)
[img] Text (BAB II)
4. BAB II.pdf
Restricted to Registered users only

Download (356kB)
[img] Text (BAB III)
5. BAB III.pdf

Download (202kB)
[img] Text (BAB IV)
6. BAB IV.pdf
Restricted to Registered users only

Download (1MB)
[img] Text (BAB V)
7. BAB V.pdf
Restricted to Registered users only

Download (26kB)
[img] Text (DAFTAR PUSTAKA)
8. Daftar Pustaka.pdf
Restricted to Registered users only

Download (126kB)
[img] Text (LAMPIRAN)
9. Lampiran.pdf
Restricted to Registered users only

Download (2MB)

Abstract

This journal aims to implement the Long Short-Term Memory (LSTM) recurrence neural network method in predicting the average minimum temperature (tmin) value in Norway from 2015 to 2019. Historical weather data with the attribute tmin is collected and processed for training and testing. LSTM models. The LSTM model was developed with an optimized LSTM layer and trained using the Mean Absolute Error (MAE) evaluation metric. The experimental results show an accurate predictive ability compared to traditional methods. The use of LSTM in weather prediction in Norway is expected to make an effective contribution to understanding and anticipating minimum temperature changes. Keywords: LSTM, prediction, minimum temperature, weather, Norway Jurnal ini bertujuan untuk mengimplementasikan metode jaringan saraf rekurensi LSTM (Long Short-Term Memory) dalam memprediksi nilai rata-rata suhu minimum (tmin) di Nowergia pada rentang waktu 2015 hingga 2019. Data historis cuaca dengan atribut tmin dikumpulkan dan diproses untuk pelatihan dan pengujian model LSTM. Model LSTM dikembangkan dengan lapisan LSTM yang dioptimalkan dan dilatih menggunakan metrik evaluasi Mean Absolute Error (MAE). Hasil eksperimen menunjukkan kemampuan prediksi yang akurat dibandingkan metode tradisional. Penggunaan LSTM dalam prediksi cuaca di Nowergia diharapkan memberikan kontribusi efektif dalam memahami dan mengantisipasi perubahan suhu minimum. Kata kunci : LSTM, prediksi, suhu minimum, cuaca, Nowergia

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 23 061
NIM/NIDN Creators: 41519010143
Uncontrolled Keywords: LSTM, prediksi, suhu minimum, cuaca, Nowergia
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: CALVIN PRASETYO
Date Deposited: 08 Sep 2023 01:45
Last Modified: 08 Sep 2023 01:45
URI: http://repository.mercubuana.ac.id/id/eprint/80516

Actions (login required)

View Item View Item