ANALISIS SENTIMEN MASYARAKAT TERHADAP TOPIK KENAIKAN BBM DI TAHUN 2022 PADA TWITTER MENGGUNAKAN ALGORITMA NAIVA BAYES

RANDUM, ARYADHUNA (2023) ANALISIS SENTIMEN MASYARAKAT TERHADAP TOPIK KENAIKAN BBM DI TAHUN 2022 PADA TWITTER MENGGUNAKAN ALGORITMA NAIVA BAYES. S1 thesis, Universitas Mercu Buana Jakarta.

[img] Text (HAL COVER)
01 COVER.pdf

Download (503kB)
[img] Text (ABSTRAK)
02 ABSTRAK.pdf

Download (36kB)
[img] Text (BAB I)
03 BAB 1.pdf
Restricted to Registered users only

Download (91kB)
[img] Text (BAB II)
04 BAB 2.pdf
Restricted to Registered users only

Download (177kB)
[img] Text (BAB III)
05 BAB 3.pdf
Restricted to Registered users only

Download (223kB)
[img] Text (BAB IV)
06 BAB 4.pdf
Restricted to Registered users only

Download (454kB)
[img] Text (BAB V)
07 BAB 5.pdf
Restricted to Registered users only

Download (32kB)
[img] Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (133kB)
[img] Text (LAMPIRAN)
09 LAMPIRAN.pdf
Restricted to Registered users only

Download (1MB)

Abstract

Sentiment analysis is a way to get sentiment information contained in an opinion sentence on an issue, whether it tends to have a positive or negative opinion. This study aims to classify text data obtained from a social media application, namely Twitter, whether the tweets are more negative or positive. Based on the dataset used, it is Twitter data with the topic of increasing fuel prices in 2022. The tweet data is then separated into training data and testing data. This study uses the Naïve Bayes Classifier algorithm and Operator Performance to calculate the Accuracy, Precision, and Eecall levels. This research produced research results in the form of negative sentiment tweets of 2496 data and positive tweets of 101 data. The Accuracy level obtained is 95.38%, the Precision level is 96.15% and the Recall is 99.16%. Keywords: Sentiment Analysis, Twitter, Naïve Bayes, Performance. Analisis sentimen merupakan sebuah cara untuk mendapatkan informasi sentimen yang terkandung dalam suatu kalimat opini terhadap sebuah masalah, apakah cenderung beropini positif atau negatif. Penelitian ini bertujuan untuk mengklasifikasi data teks yang didapatkan dari suatu aplikasi sosial media yaitu Twitter apakah tweets tersebut lebih besar sentiment negatif atau positif. Berdasarkan Dataset yang dipakai berupa Data Twitter bertopik Kenaikan BBM di tahun 2022. Data tweet kemudian dipisahkan menjadi Data Training dan Data Testing. Penelitian ini menggunakan algoritma Naïve Bayes Classifier, dan Operator Performance untuk menghitung tingkat Accuracy, Precision, dan Recall. Penelitian ini menghasilkan hasil penelitian berupa tweets sentimen negatif sebanyak 2496 data dan tweets positif sebanyak 101 data. Tingkat Accuracy yang didapat 95.38%, tingkat Precision sebesar 96.15% dan Recall sebesar 99.16%. Kata Kunci: Analisis Sentimen, Twitter, Naïve Bayes, Performance

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 23 057
Call Number: SIK/15/23/043
NIM/NIDN Creators: 41519010025
Uncontrolled Keywords: Analisis Sentimen, Twitter, Naïve Bayes, Performance
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
100 Philosophy and Psychology/Filsafat dan Psikologi > 150 Psychology/Psikologi > 154 Subconscious and Altered States and Process/Psikologi Bawah Sadar > 154.6 Sleep Phenomena/Fenomena Tidur > 154.63 Dreams/Mimpi > 154.634 Analysis/Analisis
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 510 Mathematics/Matematika > 518 Numerical Analysis/Analisis Numerik, Analisa Numerik > 518.1 Algorithms/Algoritma
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: ADELINA HASNA SETIAWATI
Date Deposited: 22 Jul 2023 07:22
Last Modified: 22 Jul 2023 07:22
URI: http://repository.mercubuana.ac.id/id/eprint/79411

Actions (login required)

View Item View Item