IMPLEMENTASI ALGORITMA CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI PENYAKIT LEAF SCORCH PADA DAUN STROBERI MENGGUNAKAN METODE TRANSFER LEARNING MOBILE NET V1 DAN KFOLD CROSS VALIDATION

PAMUNGKAS, YUDHA ERIC (2023) IMPLEMENTASI ALGORITMA CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI PENYAKIT LEAF SCORCH PADA DAUN STROBERI MENGGUNAKAN METODE TRANSFER LEARNING MOBILE NET V1 DAN KFOLD CROSS VALIDATION. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVER.pdf

Download (285kB) | Preview
[img]
Preview
Text (ABSTRAK)
02 ABSTRAK.pdf

Download (46kB) | Preview
[img] Text (BAB I)
03 BAB 1.pdf
Restricted to Registered users only

Download (91kB)
[img] Text (BAB II)
04 BAB 2.pdf
Restricted to Registered users only

Download (115kB)
[img] Text (BAB III)
05 BAB 3.pdf
Restricted to Registered users only

Download (66kB)
[img] Text (BAB IV)
06 BAB 4.pdf
Restricted to Registered users only

Download (462kB)
[img] Text (BAB V)
07 BAB 5.pdf
Restricted to Registered users only

Download (43kB)
[img] Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (48kB)
[img] Text (LAMPIRAN)
09 LAMPIRAN.pdf
Restricted to Registered users only

Download (956kB)

Abstract

Strawberries are a type of subtropical plant and are classified as herbaceous fruit plants, which were first discovered in Chile, Latin America. There are several diseases that can affect strawberry leaves, leaf scorch is one of the most common leaf diseases of strawberry plants, caused by fungal species. Signs of leaf scorch disease consist of many small, irregular purple spots that appear on the outer surface of the leaf. Control of leaf scorch disease on strawberry leaves is important, because if it is ignored it will make the leaves more damaged and will cause losses for farmers. Deep learning is a branch of artificial intelligence that can perform image processing and data classification with promising results and great potential. Classification will be carried out with two classes in the form of images of healthy strawberry leaves and images of leaves affected by leaf scorch disease using the Convolutional Neural Network (CNN) algorithm with the MobileNet v1 pre-trained model. Based on the results of evaluating the model with the k-fold cross validation method, the highest average accuracy was obtained at 98.5%, obtained at the 5th iteration. While the lowest average accuracy value is obtained at the 2nd iteration, which is equal to 95.7%. The accuracy value of the average results of each iteration reached 96.7%. Key words: Convolutional Neural Network, Classification, Deep Learning, Strawberry Leaf Disease. Stroberi merupakan jenis tanaman subtropis dan tergolong tanaman buah berupa herba, yang pertama kali ditemukan di Chili, Amerika Latin. Terdapat beberapa penyakit yang dapat mempengaruhi daun stroberi, leaf scorch merupakan salah satu penyakit daun yang paling umum pada tanaman stroberi yang disebabkan oleh spesies jamur. Tanda penyakit leaf scorch terdiri dari banyak bintik-bintik kecil berwarna ungu tidak beraturan yang muncul di permukaan luar daun. Pengendalian penyakit leaf scorch pada daun stroberi penting, karena apabila diabaikan akan membuat daun menjadi lebih rusak dan akan menyebabkan kerugian oleh para petani. Deep learning merupakan salah satu cabang dari kecerdasan buatan yang dapat melakukan pemrosesan gambar dan klasifikasi data dengan menjanjikan hasil dan potensi yang besar. Klasifikasi akan dilakukan dengan dua kelas berupa citra daun stroberi sehat dan citra daun yang terkena penyakit leaf scorch menggunakan algoritma Convolutional Neural Network (CNN) dengan pre-trained model MobileNet v1. Berdasarkan hasil evaluasi model dengan metode k-fold cross validation, mendapatkan hasil rata-rata akurasi tertinggi yaitu sebesar 98,5%, didapat pada iterasi ke-5. Sedangkan untuk rata-rata nilai akurasi terendah didapat pada iterasi ke-2 yaitu sebesar 95,7%. Nilai akurasi dari hasil rata-rata setiap iterasi sebesar 96,7%. Kata kunci: Convolutional Neural Network, Deep Learning, Klasifikasi, Penyakit Daun Stroberi

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 23 032
NIM/NIDN Creators: 41519010072
Uncontrolled Keywords: Convolutional Neural Network, Deep Learning, Klasifikasi, Penyakit Daun Stroberi
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 020 Library and Information Sciences/Perpustakaan dan Ilmu Informasi > 025 Operations, Archives, Information Centers/Operasional Perpustakaan, Arsip dan Pusat Informasi, Pelayanan dan Pengelolaan Perpustakaan > 025.3 Bibliographic Analysis and Control/Bibliografi Analisis dan Kontrol Perpustakaan > 025.35 Cooperative Cataloging, Classification, Indexing/Pengatalogan Khusus, Klasifikasi, Pengindeksan
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 510 Mathematics/Matematika > 518 Numerical Analysis/Analisis Numerik, Analisa Numerik > 518.1 Algorithms/Algoritma
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: ADELINA HASNA SETIAWATI
Date Deposited: 12 Apr 2023 07:10
Last Modified: 12 Apr 2023 07:10
URI: http://repository.mercubuana.ac.id/id/eprint/76413

Actions (login required)

View Item View Item