IMPLEMENTATION OF DEEP LEARNING ALGORITHM IN WASTE CLASSIFICATION USING YOLOV5S REAL-TIME OBJECT DETECTION

HARIS, MUHAMMAD IMTIYAZ NURDIANSYAH (2023) IMPLEMENTATION OF DEEP LEARNING ALGORITHM IN WASTE CLASSIFICATION USING YOLOV5S REAL-TIME OBJECT DETECTION. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVER.pdf

Download (394kB) | Preview
[img]
Preview
Text (ABSTRAK)
02 ABSTRAK.pdf

Download (21kB) | Preview
[img] Text (BAB I)
03 BAB 1.pdf
Restricted to Registered users only

Download (58kB)
[img] Text (BAB II)
04 BAB 2.pdf
Restricted to Registered users only

Download (189kB)
[img] Text (BAB III)
05 BAB 3.pdf
Restricted to Registered users only

Download (186kB)
[img] Text (BAB IV)
06 BAB 4.pdf
Restricted to Registered users only

Download (266kB)
[img] Text (BAB V)
07 BAB 5.pdf
Restricted to Registered users only

Download (78kB)
[img] Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (149kB)
[img] Text (LAMPIRAN)
09 LAMPIRAN.pdf
Restricted to Registered users only

Download (998kB)

Abstract

Ineffective waste management may have a negative influence on the surrounding environment, which may also prevent it from functioning at its best. a more cuttingedge approach to trash management may be possible with the assistance of item detection. This research study makes a proposal for the use of image processing YOLO (You Only Look Once) deep learning technology is used to determine the categorization of many types of rubbish objects. Garbage can be deconstructed more reliably and quickly if a classification mechanism is in place. It is well known that YOLOv5s is capable of providing rapid real-time object identification, which enables it to identify different types of trash according to categorization. Keywords: Waste management, Deep learning, Object detection, Classification Pengelolaan sampah yang tidak efektif dapat memberikan pengaruh negatif terhadap lingkungan sekitar, yang juga dapat mencegahnya berfungsi secara maksimal. pendekatan yang lebih mutakhir untuk pengelolaan sampah dimungkinkan dengan bantuan deteksi barang. Studi penelitian ini membuat proposal penggunaan teknologi pengolahan citra YOLO (You Only Look Once) deep learning yang digunakan untuk menentukan kategorisasi berbagai jenis objek sampah. Sampah dapat didekonstruksi dengan lebih andal dan cepat jika ada mekanisme klasifikasi. Diketahui dengan baik bahwa YOLOv5s mampu memberikan identifikasi objek real-time yang cepat, yang memungkinkannya mengidentifikasi berbagai jenis sampah berdasarkan kategorisasi. Kata kunci: Pengelolaan limbah, Pembelajaran mendalam, Deteksi objek, Klasifikasi

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 23 024
Call Number: SIK/15/23/026
NIM/NIDN Creators: 41519010210
Uncontrolled Keywords: Pengelolaan limbah, Pembelajaran mendalam, Deteksi objek, Klasifikasi
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.3 Artificial Intelligence/Kecerdasan Buatan > 006.31 Machine Learning/Pembelajaran Mesin
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 510 Mathematics/Matematika > 518 Numerical Analysis/Analisis Numerik, Analisa Numerik > 518.1 Algorithms/Algoritma
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: ADELINA HASNA SETIAWATI
Date Deposited: 04 Apr 2023 04:58
Last Modified: 04 Apr 2023 04:58
URI: http://repository.mercubuana.ac.id/id/eprint/76036

Actions (login required)

View Item View Item