MAHENDRA, YUSRIL IHZA (2023) PERAMALAN HASIL PENJUALAN PRODUK PERAWATAN KESEHATAN MULUT ANTARA MODEL ARIMA DAN LSTM PADA DISTRIBUTOR XYZ. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (HAL COVER)
01 COVER.pdf Download (1MB) | Preview |
|
|
Text (ABSTRAK)
02 ABSTRAK.pdf Download (548kB) | Preview |
|
Text (BAB I)
03 BAB 1.pdf Restricted to Registered users only Download (623kB) |
||
Text (BAB II)
04 BAB 2.pdf Restricted to Registered users only Download (861kB) |
||
Text (BAB III)
05 BAB 3.pdf Restricted to Registered users only Download (876kB) |
||
Text (BAB IV)
06 BAB 4.pdf Restricted to Registered users only Download (1MB) |
||
Text (BAB V)
07 BAB 5.pdf Restricted to Registered users only Download (515kB) |
||
Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf Restricted to Registered users only Download (556kB) |
||
Text (LAMPIRAN)
09 LAMPIRAN.pdf Restricted to Registered users only Download (2MB) |
Abstract
Forecasting sales of oral health care products is crucial for distributor XYZ to determine marketing strategies and inventory levels. In this research, the performance comparison of two forecasting methods, ARIMA and LSTM, were evaluated using sales data for a period of 2 years and 9 months from January 2020 to September 2022, with a total of 75166 data. Evaluation of the models was done using the Root Mean Square Error metric. The results of the analysis showed that the ARIMA model provided better forecasting results with a lower Root Mean Square Error value of 30%, compared to the LSTM model with an Root Mean Square Error value of 32%. Key words: ARIMA; LSTM; forecasting; time series Peramalan hasil penjualan produk perawatan kesehatan mulut adalah hal yang penting bagi distributor XYZ untuk menentukan strategi pemasaran dan persediaan barang. Dalam penelitian ini, perbandingan kinerja dari dua metode peramalan yaitu ARIMA dan LSTM pada data hasil penjualan selama 2 tahun 9 bulan dari Januari 2020 sampai 2022 September yang berjumlah 75166 data. Evaluasi model dilakukan dengan menggunakan metrik Root Mean Square Error. Hasil analisis menunjukkan bahwa model ARIMA memberikan hasil peramalan yang lebih baik dengan nilai Root Mean Square Error yang lebih rendah yaitu 30%, dibandingkan dengan model LSTM dengan nilai Root Mean Square Error sebesar 32%. Kata kunci: Forecasting; Time Series; ARIMA; LSTM
Actions (login required)
View Item |