PERAMALAN HASIL PENJUALAN PRODUK PERAWATAN KESEHATAN MULUT ANTARA MODEL ARIMA DAN LSTM PADA DISTRIBUTOR XYZ

MAHENDRA, YUSRIL IHZA (2023) PERAMALAN HASIL PENJUALAN PRODUK PERAWATAN KESEHATAN MULUT ANTARA MODEL ARIMA DAN LSTM PADA DISTRIBUTOR XYZ. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVER.pdf

Download (1MB) | Preview
[img]
Preview
Text (ABSTRAK)
02 ABSTRAK.pdf

Download (548kB) | Preview
[img] Text (BAB I)
03 BAB 1.pdf
Restricted to Registered users only

Download (623kB)
[img] Text (BAB II)
04 BAB 2.pdf
Restricted to Registered users only

Download (861kB)
[img] Text (BAB III)
05 BAB 3.pdf
Restricted to Registered users only

Download (876kB)
[img] Text (BAB IV)
06 BAB 4.pdf
Restricted to Registered users only

Download (1MB)
[img] Text (BAB V)
07 BAB 5.pdf
Restricted to Registered users only

Download (515kB)
[img] Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (556kB)
[img] Text (LAMPIRAN)
09 LAMPIRAN.pdf
Restricted to Registered users only

Download (2MB)

Abstract

Forecasting sales of oral health care products is crucial for distributor XYZ to determine marketing strategies and inventory levels. In this research, the performance comparison of two forecasting methods, ARIMA and LSTM, were evaluated using sales data for a period of 2 years and 9 months from January 2020 to September 2022, with a total of 75166 data. Evaluation of the models was done using the Root Mean Square Error metric. The results of the analysis showed that the ARIMA model provided better forecasting results with a lower Root Mean Square Error value of 30%, compared to the LSTM model with an Root Mean Square Error value of 32%. Key words: ARIMA; LSTM; forecasting; time series Peramalan hasil penjualan produk perawatan kesehatan mulut adalah hal yang penting bagi distributor XYZ untuk menentukan strategi pemasaran dan persediaan barang. Dalam penelitian ini, perbandingan kinerja dari dua metode peramalan yaitu ARIMA dan LSTM pada data hasil penjualan selama 2 tahun 9 bulan dari Januari 2020 sampai 2022 September yang berjumlah 75166 data. Evaluasi model dilakukan dengan menggunakan metrik Root Mean Square Error. Hasil analisis menunjukkan bahwa model ARIMA memberikan hasil peramalan yang lebih baik dengan nilai Root Mean Square Error yang lebih rendah yaitu 30%, dibandingkan dengan model LSTM dengan nilai Root Mean Square Error sebesar 32%. Kata kunci: Forecasting; Time Series; ARIMA; LSTM

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 23 043
Call Number: SIK/15/23/040
NIM/NIDN Creators: 41518110064
Uncontrolled Keywords: Forecasting; Time Series; ARIMA; LSTM
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
600 Technology/Teknologi > 610 Medical, Medicine, and Health Sciences/Ilmu Kedokteran, Ilmu Pengobatan dan Ilmu Kesehatan > 617 Surgery, Regional Medicine, Dentistry, Ophthalmology, Otology, Audiology/Pembedahan, Kedokteran Daerah, Kedokteran Gigi, Oftalmologi, Otologi, Audiologi > 617.9 Auxiliary Techniques and Procedures, Apparatus and Equipment of Surgical Appliances/Teknik, Prosedur, Alat-alat dan Perlengkapan Pembedahan
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: MILA RISKA
Date Deposited: 13 May 2023 01:57
Last Modified: 13 May 2023 08:17
URI: http://repository.mercubuana.ac.id/id/eprint/75841

Actions (login required)

View Item View Item