TWITTER HOAX NEWS DETECTION SYSTEM USING NAÏVE BAYES AND SUPPORT VECTOR MACHINE (SVM) METHOD

SHODRI, HALIM (2023) TWITTER HOAX NEWS DETECTION SYSTEM USING NAÏVE BAYES AND SUPPORT VECTOR MACHINE (SVM) METHOD. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVER.pdf

Download (568kB) | Preview
[img]
Preview
Text (ABSTRAK)
02 ABSTRAK.pdf

Download (24kB) | Preview
[img] Text (BAB I)
03 BAB 1.pdf
Restricted to Registered users only

Download (39kB)
[img] Text (BAB II)
04 BAB 2.pdf
Restricted to Registered users only

Download (164kB)
[img] Text (BAB III)
05 BAB 3.pdf
Restricted to Registered users only

Download (103kB)
[img] Text (BAB IV)
06 BAB 4.pdf
Restricted to Registered users only

Download (182kB)
[img] Text (BAB V)
07 BAB 5.pdf
Restricted to Registered users only

Download (345kB)
[img] Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (156kB)
[img] Text (LAMPIRAN)
09 LAMPIRAN.pdf
Restricted to Registered users only

Download (789kB)

Abstract

This research focuses on the disruption caused to Twitter users by the textual transmission of incorrect information. The development of a tool to recognize bogus news inside the Twitter application is one of the tactics taken to tackle this problem. A corpus of textual information from social media may document written or spoken language use. Using Naïve Bayes and Support Vector Machine techniques, the authors of this study created a Twitter hoax detection system. The classification approach is executed using the pre-processing phase and TF-IDF word weighting until a corpus pertaining to false news is formed. Keywords: hoax, hoax detection, naïve bayes, support vector machine, tf-idf, natural language processing Penelitian ini berfokus pada gangguan yang disebabkan oleh pengguna Twitter oleh transmisi tekstual dari informasi yang salah. Pengembangan alat untuk mengenali berita palsu di dalam aplikasi Twitter adalah salah satu taktik yang diambil untuk mengatasi masalah ini. Korpus informasi tekstual dari media sosial dapat mendokumentasikan penggunaan bahasa tertulis atau lisan. Dengan menggunakan teknik Naïve Bayes dan Support Vector Machine, penulis penelitian ini membuat sistem pendeteksi hoax Twitter. Pendekatan klasifikasi dilakukan dengan menggunakan tahap pre-processing dan pembobotan kata TF-IDF hingga terbentuk korpus yang berkaitan dengan berita bohong. Kata kunci: hoax, deteksi hoax, naïve bayes, support vector machine, tfidf, natural language processing

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 23 016
NIM/NIDN Creators: 41519010092
Uncontrolled Keywords: hoax, deteksi hoax, naïve bayes, support vector machine, tfidf, natural language processing
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 001 Knowledge/Ilmu Pengetahuan > 001.9 Controversial Knowledge/Pengetahuan Kontroversial
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 001 Knowledge/Ilmu Pengetahuan > 001.9 Controversial Knowledge/Pengetahuan Kontroversial > 001.95 Deceptions and Hoaxes/Penipuan dan Hoax
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 003 Systems/Sistem-sistem
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 510 Mathematics/Matematika > 518 Numerical Analysis/Analisis Numerik, Analisa Numerik > 518.1 Algorithms/Algoritma
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: ADELINA HASNA SETIAWATI
Date Deposited: 31 Mar 2023 06:44
Last Modified: 31 Mar 2023 06:44
URI: http://repository.mercubuana.ac.id/id/eprint/75776

Actions (login required)

View Item View Item