MUHLIS, MUHLIS (2021) APLIKASI ABSENSI TEST PSIKOTEST PT.INDOSAT BEDASARKAN PENGENALAN WAJAH MENGGUNAKAN METODE PINCIPAL COMPONENT ANALYSIS. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (HAL COVER)
01 Cover.pdf Download (913kB) | Preview |
|
Text (BAB I)
02 BAB 1.pdf Restricted to Registered users only Download (593kB) |
||
Text (BAB II)
03 BAB 2.pdf Restricted to Registered users only Download (362kB) |
||
Text (BAB III)
04 BAB 3.pdf Restricted to Registered users only Download (354kB) |
||
Text (BAB IV)
05 BAB 4.pdf Restricted to Registered users only Download (1MB) |
||
Text (BAB V)
06 BAB 5.pdf Restricted to Registered users only Download (588kB) |
||
Text (DAFTAR PUSTAKA)
07 DAFTAR PUSTAKA.pdf Restricted to Registered users only Download (293kB) |
||
Text (LAMPIRAN)
08 LAMPIRAN.pdf Restricted to Registered users only Download (517kB) |
Abstract
Attendance lists are used by schools and companies to control attendance. Nowadays there are so many attendance methods that have been applied with manual methods such as signatures or calling names. Manual attendance system which is still simple has weaknesses that can be easily manipulated. A person's signature can be forged, while a name can be represented by someone else. With the development of technology at this very rapid rate, it is expected to solve the problem by using technology such as using face recognition. Face recognition is one of the biometric technologies used to detect and identify faces. This face recognition application uses a camera to capture a person's face and compare it with a specific database. This application of attendance is a desktop-based application using Linear Discriminant Analysis method with C# language. This method is good for extracting facial features using Eigenface Algorithm. Based on the experimental processes conducted it can be concluded that the success rate of facial recognition average is 73%. Keywords: face recognition, Psycho test attendance, Principal Component Analysis (PCA) Penggunaan absensi konvensional digunakan oleh sekolah dan perusahaan untuk mengontrol kehadiran seseorang. Metode ini dengan cara memanggil nama atau mengisi list tanda tangan. Hanya saja metode ini memiliki kelemahan dan dapat dimanipulasi. Penggunaan face recognition dapat menghindari kelemahan tersebut. Face recognition adalah salah satu dari teknologi biometrik yang digunakan untuk mendeteksi dan mengidentifikasi wajah. Aplikasi pengenalan wajah ini menggunakan sebuah kamera untuk menangkap wajah seseorang dan dibandingkan dengan database tertentu. Aplikasi absensi ini berbasis dekstop menggunakan bahasa C# dengan metode Principal Component Analysis (PCA). Metode ini melakukan ekstraksi fitur wajah menggunakan Algoritma Eigenface. Berdasarkan proses uji coba yang dilakukan dapat disimpulkan bahwa tingkat akurasi sebesar 73%. Kata Kunci: pengenalan wajah, Absensi psikotes, Principal Component Analysis (PCA).
Actions (login required)
View Item |