OPTIMASI KENDALI PID DENGAN MENGGUNAKAN METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS) PADA SISTEM KENDALI SUHU HEAT EXCHANGER

SAPUTRA, ANDRY YOVI (2023) OPTIMASI KENDALI PID DENGAN MENGGUNAKAN METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS) PADA SISTEM KENDALI SUHU HEAT EXCHANGER. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 Cover.pdf

Download (327kB) | Preview
[img]
Preview
Text (ABSTRAK)
02 Abstrak.pdf

Download (68kB) | Preview
[img] Text (BAB I)
03 Bab 1.pdf
Restricted to Registered users only

Download (125kB)
[img] Text (BAB II)
04 Bab 2.pdf
Restricted to Registered users only

Download (316kB)
[img] Text (BAB III)
05 Bab 3.pdf
Restricted to Registered users only

Download (707kB)
[img] Text (BAB IV)
06 Bab 4.pdf
Restricted to Registered users only

Download (164kB)
[img] Text (BAB V)
07 Bab 5.pdf
Restricted to Registered users only

Download (66kB)
[img] Text (DAFTAR PUSTAKA)
08 Daftar Pustaka.pdf
Restricted to Registered users only

Download (138kB)

Abstract

A heat exchanger is a device that transfers heat from one fluid to another without mixing the two fluids. There is a wall between them or two separate fluids that are immediately in contact so that heat is exchanged through friction. Heat exchangers are widely used in natural gas cooling and power plants in the refinery chemical and petrochemical industries. This study aims to design and analyze how a PID tuning control system uses an Adaptive Neuro Fuzzy Inference System (ANFIS). This control system uses the heat exchanger temperature parameter as an input signal to control the system. Thus it is expected that the water temperature in the heat exchanger can be kept at a set point. The ANFIS method is used to maximize the input of the fuzzy membership function. This method studies the progress of fuzzy membership function input using conventional control measurement data in heat exchanger applications. After reading the data ANFIS will improve the fuzzy membership function input. The results of the ANFIS-PID controller showed rise time = 6.9 s, settling time = 50.1 s, overshoot = 4.655 %, undershoot = 1.498 % and steady state error = 0.0000103 %. The ANFIS-PID controller is given the same treatment as Fuzzy in the form of a disturbance at 300 seconds and produces a steady state with a value of settling time = 367.4 s. Keywords : heat excahnger, PID, Fuzzy, Adaptive Neuro Fuzzy Inference System (ANFIS) Heat exchanger adalah alat yang berfungsi untuk melakukan penukaran kalor dari satu fluida ke fluida lain tanpa mencampur kedua fluida tersebut. Pertukaran panas terjadi karena adanya kontak, baik antara fluida terdapat dinding yang memisahkannya maupun keduanya bercampur langsung begitu saja. Penukar panas sangat luas dipakai dalam industri kilang minyak, pabrik kimia maupun petrokimia, industri gas alam, refrigasi, dan pembangkit listrik. Penelitian ini bertujuan untuk merancang dan menganalisa bagaimana sistem kendali tuning PID menggunakan Adaptive Neuro Fuzzy Inference System (ANFIS). Sistem kontrol ini menggunakan parameter temperature heat exchanger sebagai sinyal inputan untuk sistem kontrol. Sehingga diharapkan temperature air pada heat exchanger dapat dijaga untuk tetap berada pada setpoint-nya. Untuk meningkatkan input fungsi keanggotaan fuzzy, digunakan metode ANFIS. Metode ini akan mempelajari perbaikan input fungsi keanggotaan fuzzy dengan menggunakan data pengukuran hasil kontrol konvensional pada aplikasi heat exchanger. Setelah mempelajari datanya, ANFIS akan memperbaiki input fungsi keanggotaan fuzzy. Hasil dari ANFIS-PID controller didapatkan nilai rise time = 6.9 s, settling time = 50.1 s, overshoot = 4.655 %, undershoot = 1.498 % dan steady state error = 0,0000103 %. Controller ANFIS-PID diberikan treatment yang sama dengan Fuzzy yaitu berupa gangguan pada detik ke-300 dan menghasilkan steady state yaitu dengan nilai settling time = 367.4 s. Kata kunci : heat exchanger, PID, Fuzzy, Adaptive Neuro Fuzzy Inference System (ANFIS)

Item Type: Thesis (S1)
Call Number CD: FT/ELK. 23 044
Call Number: ST/14/23/043
NIM/NIDN Creators: 41420120021
Uncontrolled Keywords: heat exchanger, PID, Fuzzy, Adaptive Neuro Fuzzy Inference System (ANFIS)
Subjects: 500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 530 Physics/Fisika > 536 Heat/Panas
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 530 Physics/Fisika > 536 Heat/Panas > 536.5 Temperature/Temperatur, Suhu
600 Technology/Teknologi > 620 Engineering and Applied Operations/Ilmu Teknik dan operasi Terapan
600 Technology/Teknologi > 620 Engineering and Applied Operations/Ilmu Teknik dan operasi Terapan > 621 Applied Physics/Fisika terapan
600 Technology/Teknologi > 620 Engineering and Applied Operations/Ilmu Teknik dan operasi Terapan > 621 Applied Physics/Fisika terapan > 621.3 Electrical Engineering, Lighting, Superconductivity, Magnetic Engineering, Applied Optics, Paraphotic Technology, Electronics Communications Engineering, Computers/Teknik Elektro, Pencahayaan, Superkonduktivitas, Teknik Magnetik, Optik Terapan, Tekn
Divisions: Fakultas Teknik > Teknik Elektro
Depositing User: ADELINA HASNA SETIAWATI
Date Deposited: 08 Mar 2023 04:07
Last Modified: 08 Mar 2023 04:07
URI: http://repository.mercubuana.ac.id/id/eprint/74853

Actions (login required)

View Item View Item