PREDIKSI NILAI SENSOR PADA AUTOMATIC WEATHER STATION (AWS) DENGAN ARTIFICIAL NEURAL NETWORK (ANN) dan ADAPTIVE NEUROFUZZY INFERENCE SYSTEM (ANFIS)

WELLYANTAMA, PRADA (2022) PREDIKSI NILAI SENSOR PADA AUTOMATIC WEATHER STATION (AWS) DENGAN ARTIFICIAL NEURAL NETWORK (ANN) dan ADAPTIVE NEUROFUZZY INFERENCE SYSTEM (ANFIS). S2 thesis, Universitas Mercu Buana Jakarta-Menteng.

[img]
Preview
Text (Cover)
55418120007_prada_01 - prada wellyantama.pdf

Download (384kB) | Preview
[img]
Preview
Text (Abstrak)
55418120007_prada_02 - prada wellyantama.pdf

Download (26kB) | Preview
[img] Text (Bab 1)
55418120007_prada_03 - prada wellyantama.pdf
Restricted to Registered users only

Download (136kB)
[img] Text (Bab 2)
55418120007_prada_04 - prada wellyantama.pdf
Restricted to Registered users only

Download (310kB)
[img] Text (Bab 3)
55418120007_prada_05 - prada wellyantama.pdf
Restricted to Registered users only

Download (156kB)
[img] Text (Bab 4)
55418120007_prada_06 - prada wellyantama.pdf
Restricted to Registered users only

Download (931kB)
[img] Text (Bab 5)
55418120007_prada_07 - prada wellyantama.pdf
Restricted to Registered users only

Download (25kB)
[img] Text (Daftar Pustaka)
55418120007_prada_09 - prada wellyantama.pdf
Restricted to Registered users only

Download (84kB)
[img]
Preview
Text (Lampiran)
55418120007_prada_10 - prada wellyantama.pdf

Download (57kB) | Preview
[img] Text (Form Pernyataan Keabsahan)
55418120007_prada_11 - prada wellyantama.pdf
Restricted to Repository staff only

Download (110kB)

Abstract

Automatic weather station (AWS) merupakan sistem pengamatan cuaca otomatis yang berkontribusi melengkapi data dan informasi cuaca. AWS umumnya dipasang dilokasi-lokasi seperti Pelabuhan, bandara, daerah pertambangan, pertanian dan seluruh lokasi yang membutuhkan informasi cuaca. Permasalahan pada sistem AWS, tidak tertutup kemungkinan dapat terjadi, seperti kerusakan sistem power, kerusakan sensor maupun kecelakaan yang mengakibatkan kerusakan seluruh sistem, baik itu karena alam maupun kelalaian manusia. Untuk menaggulangi segala kejadian tersebut, dibutuhkan sebuah informasi cadangan sehingga disaat terjadi kerusakan ataupun kondisi AWS dalam permasalahan, informasi cuaca dapat tetap didapatkan oleh masyarakat. Salah satu cara yang dapat digunakan ialah dengan permodelan Artificial neural network (ANN) dan Adaptive Neuro Fuzzy Inference System (ANFIS). Permodelan dilakukan untuk mengestimasi parameter cuaca, dengan prediktor parameter cuaca lainnya. Sehingga walaupun jika tidak ada sensor dikarenakan rusak ataupun tidak tersedianya stok sukucadang, kita dapat mengestimasi parameter cuaca yang diukur oleh sensor tersebut. Kata kunci: ANN, AWS, Sensor Automatic weather station (AWS) is an automatic weather observation tool that contributes to complete weather data and information. AWS is generally installed in locations such as ports, airports, mining areas, agriculture and all locations that require weather information. Problems with the AWS system are possible, such as damage to the power system, damage to sensors or accidents that cause damage to the entire system, whether due to nature or human negligence. To deal with all these incidents, a backup of information is needed so that when there is damage or AWS conditions are in trouble, weather information can still be obtained by the public. One of the methods that can be used is Artificial Neural Network (ANN) and dan Adaptive Neuro Fuzzy Inference System (ANFIS) modeling. Modeling is done to estimate weather parameters, with other weather parameter predictors. So even if there is no sensor due to damage or unavailability of spare parts stock, we can estimate the weather parameters measured by the sensor. Keywords: ANN, AWS, Systems Sensor

Item Type: Thesis (S2)
NIM/NIDN Creators: 55418120007
Uncontrolled Keywords: ANN, AWS, Systems Sensor, ANN, AWS, Sensor
Subjects: 600 Technology/Teknologi > 620 Engineering and Applied Operations/Ilmu Teknik dan operasi Terapan > 621 Applied Physics/Fisika terapan
Divisions: Pascasarjana > Magister Teknik Elektro
Depositing User: ORYZA LUVITA
Date Deposited: 03 Dec 2022 03:36
Last Modified: 03 Dec 2022 03:36
URI: http://repository.mercubuana.ac.id/id/eprint/72148

Actions (login required)

View Item View Item