ANALISIS SENTIMEN OPINI MASYARAKAT TENTANG PENYAKIT HEPATITIS AKUT MENGGUNAKAN METODE NAÏVE BAYES

RIFAI, AHMAD (2022) ANALISIS SENTIMEN OPINI MASYARAKAT TENTANG PENYAKIT HEPATITIS AKUT MENGGUNAKAN METODE NAÏVE BAYES. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 Cover.pdf

Download (861kB) | Preview
[img]
Preview
Text (ABSTRAK)
02 Abstrak.pdf

Download (65kB) | Preview
[img] Text (BAB I)
03 Bab 1.pdf
Restricted to Registered users only

Download (299kB)
[img] Text (BAB II)
04 Bab 2.pdf
Restricted to Registered users only

Download (91kB)
[img] Text (BAB III)
05 Bab 3.pdf
Restricted to Registered users only

Download (165kB)
[img] Text (BAB IV)
06 Bab 4.pdf
Restricted to Registered users only

Download (64kB)
[img] Text (BAB V)
07 Bab 5.pdf
Restricted to Registered users only

Download (80kB)
[img] Text (BAB VI)
08 Bab 6.pdf
Restricted to Registered users only

Download (37kB)
[img] Text (DAFTAR PUSTAKA)
09 Daftar Pustaka.pdf
Restricted to Registered users only

Download (203kB)
[img] Text (LAMPIRAN)
10 Lampiran.pdf
Restricted to Registered users only

Download (96kB)

Abstract

Hepatitis itself is considered one of the diseases that disturbs the citizens of the world, it will not close in Indonesia, because hepatitis is a deadly disease and the annual death rate reaches 1-2 million. Therefore, the author will conduct a sentiment analysis of public opinion about this acute hepatitis disease using the nave Bayes method. Then the sentiment is divided into 3 classes, positive, negative and neutral. making it easier to know the public's response to this acute hepatitis disease. In the stage of conducting sentiment analysis through the Preprocessing stage, where this stage will clean the data to be used so that the data will facilitate the data processing process. The method of collecting data through rapidminer tools taken from the Twitter API uses the keywords "hepatitis", "acute hepatitis". With the results on the implementation of Nave Bayes, it was obtained a value of 81% with a split percentage of 90:10. With 468 positive comments, it can be said that the Twitter community has been educated about the dangers of acute hepatitis. Keywords: Hepatitis, Naïve Bayes, Sentiment Analysis, computer science, Mercu Buana Hepatitis sendiri dianggap salah satu penyakit yang meresahkan warga dunia tidak terkecuali di Indonesia, karena penyakit hepatitis adalah penyakit yang mematikan dan angka kematian tiap tahunnya mencapai 1-2 juta. Oleh karena itu penulis akan melakukan analisis sentiment terhadap opini masyarakat tentang penyakit hepatitis akut ini menggunakan metode naïve bayes. Lalu sentiment tersebut dibagi menjadi 3 kelas yaitu positif, negative dan neutral sehingga memudahkan untuk mengetahui bagaimana tanggapan masyarakat tentang penyakit hepatitis akut ini. Dalam tahapan melakukan analisis sentimen melalui tahap Preprocessing yang dimana tahapan tersebut akan membersihkan data yang akan digunakan sehingga data tersebut akan memudahkan dalam proses pengolahan data. Metode pengumpulan data melalui tools rapidminer yang diambil dari API Twitter menggunakan kata kunci “hepatitis”, “hepatitisakut”. Dengan hasil pada pengimplementasian naïve bayes didapatkan nilai 81% dengan persentase split 90:10. Dengan hasil 468 berkomentar positif yang dapat disimpulkan bahwa masyarakat twitter sudah teredukasi terhadap bahayanya penyakit hepatitis akut. Kata kunci: penelitian, panduan, ilmu komputer, universitas mercu buana

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 22 109
NIM/NIDN Creators: 41518010135
Uncontrolled Keywords: penelitian, panduan, ilmu komputer, universitas mercu buana
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 001 Knowledge/Ilmu Pengetahuan
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 001 Knowledge/Ilmu Pengetahuan > 001.4 Research; Statistical Methods/Riset; Metode Statistik > 001.42 Reseach Methods/Metode Riset
700 Arts/Seni, Seni Rupa, Kesenian > 750 Painting and Paintings/Seni Lukis dan Lukisan > 751 Techniques and Procedures/Teknik Seni Lukis dan Lukisan, Prosedur Seni Lukis dan Lukisan > 751.4 Techniques and Procedures/Teknik dan Prosedur > 751.49 Other Methods/Metode Lainnya
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: ADELINA HASNA SETIAWATI
Date Deposited: 06 Oct 2022 03:33
Last Modified: 06 Oct 2022 03:33
URI: http://repository.mercubuana.ac.id/id/eprint/69968

Actions (login required)

View Item View Item