SYAHFUTRI, BAENINGRUM (2022) ANALISIS SENTIMEN PEMBELAJARAN JARAK JAUH BAGI PELAJAR DENGAN NAÏVE BAYES DAN SUPPORT VECTOR MACHINE. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (HAL COVER)
01 Cover.pdf Download (382kB) | Preview |
|
|
Text (ABSTRAK)
02 ABSTRACT.pdf Download (27kB) | Preview |
|
Text (BAB I)
03 BAB 1.pdf Restricted to Registered users only Download (116kB) |
||
Text (BAB II)
04 BAB 2.pdf Restricted to Registered users only Download (134kB) |
||
Text (BAB III)
05 BAB 3.pdf Restricted to Registered users only Download (200kB) |
||
Text (BAB IV)
06 BAB 4.pdf Restricted to Registered users only Download (368kB) |
||
Text (BAB V)
07 BAB 5.pdf Restricted to Registered users only Download (410kB) |
||
Text (BAB VI)
08 BAB 6.pdf Restricted to Registered users only Download (20kB) |
||
Text (DAFTAR PUSTAKA)
09 DAFTAR PUSTAKA.pdf Restricted to Registered users only Download (73kB) |
||
Text (LAMPIRAN)
10 LAMPIRAN.pdf Restricted to Registered users only Download (261kB) |
Abstract
Since March 2020, the Indonesian government has urged the Indonesian people to do activities at home and the Indonesian government has determined this with the pandemic period. This pandemic condition is an adaptation that was not usually faced in normal life, requiring everyone to do activities from home. Especially for students with the implementation of distance learning (PJJ) which is required by students to learn from their respective homes. The application of distance learning requires adaptation and understanding that must be done for students to understand distance learning materials during the pandemic. The solution to this problem is an analysis related to distance learning for students by knowing the opinions of students in understanding distance learning materials. The sentiment analysis method with the Support Vector Machine algorithm and Naïve Bayes is one technique used to determine student opinions results in understanding distance learning materials. In this study, there were several stages carried out for sentiment analysis, including the data collection stage, data preprocessing, sentiment analysis stages using the Naïve Bayes method, and the Sector Vector Machine with data exploration using Exploratory Data Analysis (EDA). Based on the research that has been carried out, the results of the Sentiment Analysis Algorithm with Naïve Bayes, the results showed that the calcification produced better results with the Sector Vector Machine (SVM) Algorithm which gave above 80% accuracy and exceeded Naïve Bayes. Keywords: Distance Learning, PJJ, Naïve Bayes, Support Vector Machine, Exploratory Data Analysis (EDA). Sejak Maret 2020 Pemerintah Indonesia menghimbau masyarakat Indonesia untuk beraktivitas di dalam rumah dan pemerintah Indonesia menetapkan hal ini dengan masa pandemi. Kondisi pandemi ini merupakan adaptasi yang tidak biasanya dihadapi dalam kehidupan normal sebelumnya, yang mengharuskan semuanya beraktifitas dari rumah. Terutama bagi para pelajar dengan diterapkannya pembelajaran jarak jauh (PJJ) yang diharuskan para pelajar melakukan pembelajaran dari rumah masing-masing. Penerapan pembelajaran jarak jauh memerlukan adaptasi dan pemahaman yang harus dilakukan bagi pelajar untuk memahami materi pembelajaran jarak jauh selama masa pandemi. Solusi dari permasalahan tersebut dilakukannya analisis terkait pembelajaran jarak jauh bagi pelajar dengan mengetahui opini pelajar dalam memahami materi pembelajaran jarak jauh. Metode analisis sentiment dengan Algoritma Support Vector Machine dan Naïve Bayes merupakan salah satu teknik yang digunakan untuk mengetahui hasil opini pelajar dalam memahami materi pembelajaran jarak jauh. Pada penelitian ini, ada beberapa tahap yang dilakukan untuk analisis sentimen, diantaranya tahap pengumpulan data, preprocessing data, tahapan analisis sentimen dengan menggunakan metode Naïve Bayes dan Sector Vector Machine dengan ekplorasi data menggunakan Exploratory Data Analysis (EDA). Berdasarkan dari penelitian yang telah dilakukan, didapatkan hasil bahwa Metode Analisis Sentiment Algoritma dengan Naïve Bayes, hasil penelitian menunjukkan bahwa pengkalifikasi menghasilkan hasil yang lebih baik dengan Algoritma Sector Vector Machine (SVM) yang memberi diatas akurasi 80% dan melebih dari Naïve Bayes. Kata kunci: Pembelajaran Jarak Jauh, PJJ, Naïve Bayes, Support Vector Machine, Exploratory Data Analysis (EDA).
Item Type: | Thesis (S1) |
---|---|
Call Number CD: | FIK/INFO. 22 101 |
NIM/NIDN Creators: | 41519120036 |
Uncontrolled Keywords: | Pembelajaran Jarak Jauh, PJJ, Naïve Bayes, Support Vector Machine, Exploratory Data Analysis (EDA) |
Subjects: | 100 Philosophy and Psychology/Filsafat dan Psikologi > 150 Psychology/Psikologi 100 Philosophy and Psychology/Filsafat dan Psikologi > 150 Psychology/Psikologi > 154 Subconscious and Altered States and Process/Psikologi Bawah Sadar 100 Philosophy and Psychology/Filsafat dan Psikologi > 150 Psychology/Psikologi > 154 Subconscious and Altered States and Process/Psikologi Bawah Sadar > 154.6 Sleep Phenomena/Fenomena Tidur |
Divisions: | Fakultas Ilmu Komputer > Informatika |
Depositing User: | ELMO ALHAFIIDH PUTRATAMA |
Date Deposited: | 04 Oct 2022 01:48 |
Last Modified: | 05 Oct 2022 03:26 |
URI: | http://repository.mercubuana.ac.id/id/eprint/69875 |
Actions (login required)
View Item |