COMPARISON OF LSTM VARIANTS AS A SENTIMENT PREDICTION OF MARVEL CINEMATIC UNIVERSE’S MOVIE REVIEW

FAKHRI, MUHAMMAD AMMAR (2020) COMPARISON OF LSTM VARIANTS AS A SENTIMENT PREDICTION OF MARVEL CINEMATIC UNIVERSE’S MOVIE REVIEW. S1 thesis, Universitas Mercu Buana Jakarta.

[img] Text (JURNAL MAHASISWA)
Yudisium M. Ammar Fakhri (41516010027).pdf
Restricted to Registered users only

Download (4MB)

Abstract

Sentiment Analysis is a field that studies people’s opinions expressed in a text format. Long Short-Term Memory (LSTM) is often used to solve various cases in the Natural Language field because of their decent performance and that they can overcome the problems that occurred in Recurrent Neural Network. This study will be focused on a comparison between 4 variants of LSTM (Basic LSTM, Bidirectional LSTM, Deep LSTM, and Deep Bidirectional LSTM) to predict the sentiment from reviews of each movie review in the 3rd phase of Marvel Cinematic Universe. We find out that Bidirectional LSTM can get the best validation accuracy with a maximum of 84.73% and an average of 84.36%, while Deep Bidirectional LSTM has the smallest epochs to be trained in an average of 90.4 epochs Key words: Sentiment analysis, movie review, RNN, LSTM Analisis Sentimen adalah bidang yang mempelajari opini masyarakat yang dituangkan ke dalam bentuk teks. Long Short-Term Memory (LSTM) sering digunakan untuk menyelesaikan berbagai masalah pada bidang Natural Language karena dapat memberikan performa yang baik dan mampu mengatasi masalah yang ada pada RNN. Penelitian kali ini akan berfokus pada perbandingan empat varian dari LSTM, yaitu Basic LSTM, Bidirectional LSTM, Deep LSTM, dan Deep Bidirectional LSTM untuk memprediksi sentimen dari ulasan film-film yang ada pada fase ke-3 Marvel Cinematic Universe. Bidirectional LSTM dapat memberikan performa akurasi terbaik dengan maksimal akurasi sebesar 84,36%, sedangkan Deep Bidirectional LSTM dapat melakukan training lebih cepat dibanding algoritma lain dengan rata-rata epoch sebesar 90,4. Kata kunci: Analisis sentimen, ulasan film, RNN, LSTM

Item Type: Thesis (S1)
Call Number CD: JM/TI. 20 048
NIM/NIDN Creators: 41516010027
Uncontrolled Keywords: Analisis sentimen, ulasan film, RNN, LSTM
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 005 Computer Programmming, Programs, Data/Pemprograman Komputer, Program, Data > 005.5 General Purpose Application Programs/Program Aplikasi dengan Kegunaan Khusus
600 Technology/Teknologi > 650 Management, Public Relations, Business and Auxiliary Service/Manajemen, Hubungan Masyarakat, Bisnis dan Ilmu yang Berkaitan > 658 General Management/Manajemen Umum > 658.01-658.09 [Management of Enterprises of Specific Sizes, Scopes, Forms; Data Processing]/[Pengelolaan Usaha dengan Ukuran, Lingkup, Bentuk Tertentu; Pengolahan Data]
600 Technology/Teknologi > 650 Management, Public Relations, Business and Auxiliary Service/Manajemen, Hubungan Masyarakat, Bisnis dan Ilmu yang Berkaitan > 658 General Management/Manajemen Umum > 658.01-658.09 [Management of Enterprises of Specific Sizes, Scopes, Forms; Data Processing]/[Pengelolaan Usaha dengan Ukuran, Lingkup, Bentuk Tertentu; Pengolahan Data] > 658.05 Data Processing Computer Applications/Pengolahan Data Aplikasi Komputer
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: Dede Muksin Lubis
Date Deposited: 29 Jun 2022 03:25
Last Modified: 29 Jun 2022 03:25
URI: http://repository.mercubuana.ac.id/id/eprint/64139

Actions (login required)

View Item View Item