ANALISIS SEGMENTASI AGEN PENJUALAN MENNGUNAKAN MODEL RFM DAN ALGORITMA K-MEANS (Studi Kasus : PT. Kereta Api Indonesia)

JAYA, ADE PURNAMA (2020) ANALISIS SEGMENTASI AGEN PENJUALAN MENNGUNAKAN MODEL RFM DAN ALGORITMA K-MEANS (Studi Kasus : PT. Kereta Api Indonesia). S1-Sarjana thesis, Universitas Mercu Buana Jatisampurna.

[img]
Preview
Text
1 Cover 1.pdf

Download (40kB) | Preview
[img]
Preview
Text
2 Cover 2.pdf

Download (40kB) | Preview
[img]
Preview
Text
3 Lembar Pernyataan Orisinalitas.pdf

Download (301kB) | Preview
[img]
Preview
Text
4 Surat Pernyataan Persetujuan Publikasi Tugas Akhir.pdf

Download (334kB) | Preview
[img]
Preview
Text
5 Surat Penrnyataan Luaran Tugas Akhir.pdf

Download (344kB) | Preview
[img]
Preview
Text
6 Lembar Persetujuan Penguji.pdf

Download (331kB) | Preview
[img]
Preview
Text
7 Lembar Pengesahan.pdf

Download (316kB) | Preview
[img]
Preview
Text
8 Abstrak.pdf

Download (68kB) | Preview
[img]
Preview
Text
9 Abstract.pdf

Download (27kB) | Preview
[img]
Preview
Text
10 Kata Pengantar.pdf

Download (70kB) | Preview
[img]
Preview
Text
11 Daftar Isi.pdf

Download (166kB) | Preview
[img]
Preview
Text
12 Daftar Gambar.pdf

Download (200kB) | Preview
[img]
Preview
Text
13 Daftar Tabel.pdf

Download (166kB) | Preview
[img]
Preview
Text
14 Naskah Jurnal.pdf

Download (430kB) | Preview
[img]
Preview
Text
15 Kertas Kerja.pdf

Download (26kB) | Preview
[img] Text
16 Bagian 1 Literatur Review.pdf
Restricted to Registered users only

Download (31kB)
[img] Text
17 Bagian 2 Data Set.pdf
Restricted to Registered users only

Download (121kB)
[img] Text
18 Bagian 3 Tahapan Eksperimen.pdf
Restricted to Registered users only

Download (204kB)
[img] Text
19 Bagian 4 Hasil Semua Eksperimen.pdf
Restricted to Registered users only

Download (372kB)
[img] Text
20 Bagian 5 Kesimpulan.pdf
Restricted to Repository staff only

Download (65kB)
[img] Text
21 Daftar Pustaka.pdf
Restricted to Registered users only

Download (78kB)
[img] Text
22 Lampiran.pdf
Restricted to Registered users only

Download (413kB)

Abstract

ABSTRAK Agen penjualan memberikan kontribusi yang cukup besar dalam pemasaran. Setiap agen yang berbeda memiliki nilai yang berbeda pula. Pengetahuan tentang karakteristik setiap agen yang diperlukan untuk mendukung keputusan yang diperlukan strategi bisnis perusahaan juga mengatur hubungan yang baik antara perusahaan dan agennya. Segmentasi agen penjualan dapat Segasi agen penjualan, perusahaan diharapkan dapat meminta kebijakan yang tepat. Informasi tentang segmentasi agen penjualan dapat diperoleh dengan menggunakan teknik Penambangan Data dan metode RFM (Kekinian, Frekuensi, Moneter). Teknik Data Mining K-means Clustering digunakan untuk segmentasi agen penjualan. RFM adalah model yang digunakan untuk membedakan agen berdasarkan 3 variabel, yaitu kebaruan, frekuensi, dan moneter. Dari hasil penerapan model kmeans dan agen RFM penjualan dibagi menjadi 3 segmen dengan karakteristik yang berbeda. Segmen ketiga tersebut yaitu 54,17% agen baru atau agen yang jarang terjadi transaksi dan tidak lama terjadi transaksi lagi, 35,42% agen penjualan terbaik dan merupakan agen yang ”bernilai” untuk perusahaan, serta 10,42% agen penjualan yang semakin meningkat. Kata kunci: Data Mining, k-means, Clustering, RFM. ABSTRACT Sales agents make a significant contribution in marketing. Each different agent has different values. Knowledge of the characteristics of each agent needed to support the decisions needed by the company's business strategy also regulates good relations between the company and its agents. Sales agent segmentation can be Segasi sales agents, companies are expected to be able to request the right policies. Information about sales agent segmentation can be obtained using Data Mining techniques and RFM methods (Current, Frequency, Monetary). The Kmeans Clustering Data Mining technique is used for sales agent segmentation. RFM is a model used to differentiate agents based on 3 variables, namely novelty, frequency, and monetary. The results of the application of the k-means model and the RFM sales agent are divided into 3 segments with different characteristics. The third segment is 54.17% of new agents or agents that rarely occur and there is no longer a long transaction, 35.42% of the best sales agents and agents who are "valued" for the company, and 10.42% sales agents are increasing. Keywords: Data Mining, k-means, Clustering, RFM.

Item Type: Thesis (S1-Sarjana)
Call Number CD: FIK/INFO 19 001
NIM: 41513110088
Uncontrolled Keywords: Data Mining, k-means, Clustering, RFM.
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000.01-000.09 Standard Subdivisions of Computer Science, Information and General Works/Subdivisi Standar Dari Ilmu Komputer, Informasi, dan Karya Umum
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 005 Computer Programmming, Programs, Data/Pemprograman Komputer, Program, Data
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: Nasruddin Mansyur S.Hum
Date Deposited: 02 Oct 2020 04:11
Last Modified: 02 Oct 2020 04:11
URI: http://repository.mercubuana.ac.id/id/eprint/57431

Actions (login required)

View Item View Item