PENGKLASIFIKASIAN STATUS JARINGAN PADA SISTEM INFORMASI AKADEMIK MENGGUNAKAN METODE ALGORITMA NAIVE BAYES

PRATAMA, ILHAM (2020) PENGKLASIFIKASIAN STATUS JARINGAN PADA SISTEM INFORMASI AKADEMIK MENGGUNAKAN METODE ALGORITMA NAIVE BAYES. S2 thesis, Universitas Mercu Buana Jakarta-Menteng.

[img]
Preview
Text (COVER)
1. Cover.pdf

Download (438kB) | Preview
[img] Text (BAB I)
2. BAB 1.pdf
Restricted to Registered users only

Download (108kB)
[img] Text (BAB II)
3. BAB 2.pdf
Restricted to Registered users only

Download (237kB)
[img] Text (BAB III)
4. BAB 3.pdf
Restricted to Registered users only

Download (431kB)
[img] Text (BAB IV)
5. BAB 4.pdf
Restricted to Registered users only

Download (311kB)
[img] Text (BAB V)
6. BAB 5.pdf
Restricted to Registered users only

Download (56kB)
[img] Text (DAFTAR PUSTAKA)
7. Daftar Pustaka.pdf
Restricted to Registered users only

Download (103kB)

Abstract

Sistem Informasi Akademik adalah sebuah sistem yang digunakan untuk pengelolaan data akademik dengan penerapan teknologi komputer baik hardware maupun softwar. Mengoperasikan sistem informasi akademik dibutuhkan sebuah server yang memadai serta kualitas jaringan yang bagus. Dynamic Host Configuration Protocol (DHCP) server merupakan service yang memungkinkan perangkat dapat mendistribusikan IP address secara otomatis pada host dalam sebuah jaringan. DHCP server menyediakan berupa alamat IP, DNS, Default Gateway, serta bermacam - macam informasi TCP/IP. Sistem operasi yang mendukung DHCP server yaitu Linux, GNU, Windows Net Server, Windows 2003 server. Metode yang digunakan dalam penelitan ini adalah algoritma naive bayes salah satu metode machine learning yang memanfaatkan perhitungan probabilitas dan statistic. Klasifikasi dilakukan pada data protocol yang memiliki kategori rendah, menengah dan tinggi. Hasil pada penelitian ini adalah throughput pada server sebesar 38,8% dengan kategori sedang, delay pada server sebesar 2,80 ms dengan kategori sangat bagus, dan packet loss sebesar 0% dengan kategori sangat bagus. Hasil pengklasifikasian pada protocol memiliki dua confidence yaitu menghasilkan nilai rata – rata akurasi yang tepat untuk klasifikasi pada protocol lenght sebesar 94,92% dan protocol counting sebesar 81,35%. Kata Kunci – Naive Bayes, SIAK, HTTP, SNMP, TCP, DHCP, ,ARP, Browser. Academic Information System is a system used for academic data management with the application of computer technology, both hardware and software. Operating an academic information system requires an adequate server and good network quality. Dynamic Host Configuration Protocol (DHCP) server is a service that allows devices to automatically distribute IP address to hosts in a network. The DHCP server provides IP addresses, DNS, Default Gateway, and various TCP / IP information. The operating systems that support the DHCP server are Linux, GNU, Windows Net Server, Windows 2003 server. The method used in this research is the Naive Bayes algorithm, a machine learning method that utilizes probability and statistical calculations. Classification is carried out on data protocols which have low, medium and high categories. The results in this study were the throughput on the server was 38.8% in the medium category, the delay on the server was 2.80 ms in the very good category, and the packet loss was 0% in the very good category. The results of classification on the protocol have two confidence, that is producing an average accuracy value that is right for classification on the long protocol of 94.92% and the protocol counting of 81.35%. Keyword – Naive Bayes, SIAK, HTTP, SNMP, TCP, DHCP, ISP,ARP, Browser.

Item Type: Thesis (S2)
Call Number CD: CDT-554-20-044
Call Number: T-54-MTE-20-022
NIM/NIDN Creators: 55417120013
Uncontrolled Keywords: Naive Bayes, SIAK, HTTP, SNMP, TCP, DHCP, ,ARP, Browser. Naive Bayes, SIAK, HTTP, SNMP, TCP, DHCP, ISP,ARP, Browser.
Subjects: 600 Technology/Teknologi > 620 Engineering and Applied Operations/Ilmu Teknik dan operasi Terapan > 621 Applied Physics/Fisika terapan
Divisions: Pascasarjana > Magister Teknik Elektro
Depositing User: UMMI RAHMATUSSYIFA
Date Deposited: 21 Feb 2022 05:27
Last Modified: 18 Jun 2022 06:48
URI: http://repository.mercubuana.ac.id/id/eprint/56443

Actions (login required)

View Item View Item