IMPLEMENTASI DAN ANALISA SISTEM INDOOR Wi-Fi POSITIONING DENGAN METODE FINGERPRINTING DAN ALGORITMA K-NN PADA PENGGUNA SMARTPHONE ANDROID

DARMAN, DARMAN (2020) IMPLEMENTASI DAN ANALISA SISTEM INDOOR Wi-Fi POSITIONING DENGAN METODE FINGERPRINTING DAN ALGORITMA K-NN PADA PENGGUNA SMARTPHONE ANDROID. S2 thesis, Universitas Mercu Buana Jakarta-Menteng.

[img]
Preview
Text (HALAMAN JUDUL)
1. Halaman Judul.pdf

Download (156kB) | Preview
[img]
Preview
Text (ABSTRAK)
2. Abstrak.pdf

Download (33kB) | Preview
[img]
Preview
Text (PERNYATAAN SIMILARITY CHECK)
3. Pernyataan Similarity Check.pdf

Download (174kB) | Preview
[img]
Preview
Text (LEMBAR PENGESAHAN)
4. Lembar Pengesahan.pdf

Download (97kB) | Preview
[img]
Preview
Text (SURAT PERNYATAAN)
5. Surat Pernyataan.pdf

Download (62kB) | Preview
[img]
Preview
Text (KATA PENGANTAR)
6. Kata Pengantar.pdf

Download (32kB) | Preview
[img]
Preview
Text (DAFTAR ISI)
7. Daftar Isi.pdf

Download (132kB) | Preview
[img]
Preview
Text (DAFTAR TABEL)
8. Daftar Tabel.pdf

Download (29kB) | Preview
[img]
Preview
Text (DAFTAR GAMBAR)
9. Daftar Gambar.pdf

Download (75kB) | Preview
[img]
Preview
Text (DAFTAR SINGKATAN)
10. Daftar Singkatan.pdf

Download (27kB) | Preview
[img] Text (BAB 1)
11. BAB 1.pdf
Restricted to Registered users only

Download (71kB)
[img] Text (BAB 2)
12. BAB 2.pdf
Restricted to Registered users only

Download (548kB)
[img] Text (BAB 3)
13. BAB 3.pdf
Restricted to Registered users only

Download (341kB)
[img] Text (BAB 4)
14. BAB 4.pdf
Restricted to Registered users only

Download (892kB)
[img] Text (BAB 5)
15. BAB 5.pdf
Restricted to Registered users only

Download (111kB)

Abstract

Melacak pengguna smartphone dengan menggunakan teknologi gelombang radio merupakan salah satu tema teknologi Real Time Location Service (RTLS) yang terus berkembang dan menarik untuk diteliti. GPS dapat digunakan untuk area luar ruangan saja, namun tidak dapat digunakan untuk melacak pengguna smartphone di dalam gedung. Indoor Wi-Fi Positioning System (WPS) adalah sistem untuk melacak posisi dan menghitung jumlah pengguna smartphone android di lingkungan indoor dengan menggunakan teknologi Wi-Fi dan memanfaatkan Received Signal Strength (RSS) Wi-Fi yang diterima oleh smarthphone secara real time. Penelitian ini membahas implementasi dan analisa sistem penentuan posisi di dalam ruangan dengan menggunakan metode fingerprinting dan algoritma K-Nearest Neighbor (K-NN) untuk pengguna smartphone android dengan pemrosesan data di cloud server. Aplikasi android perlu diinstal pada smartphone android dan aplikasi berbasis web untuk pemantauan posisi dan jumlah pengguna smartphone dapat di akses melalui jaringan internet. Indoor WPS yang telah di implementasikan mampu menghitung jumlah pengguna smartphone di area penelitian dengan sempurna. Skenario menggunakan grid 1.5 x 1.5 meter dan K = 1 menunjukkan tingkat kesalahan posisi 19,28% dan kesalahan jarak rata-rata 1.70 meter. Skenario menggunakan grid 3.0 x 3.0 meter dan K = 1 menunjukkan persentase kesalahan posisi 13,53% dan kesalahan jarak rata-rata 3.0 meter, sedangkan menggunakan grid 3.0 x 3.0 meter dan K = 3 menunjukkan persentase kesalahan posisi 12,14% dan kesalahan jarak rata-rata 3.0 meter. Pengaruh perubahan lingkungan pada fase positioning terhadap persentase kesalahan penentuan posisi juga dilakukan dalam penelitian ini. Kata Kunci: Wi-Fi, Indoor Positioning, RSS, Fingerprinting, K-Nearest Neighbor Tracking smartphone users by using radio wave technology is one of the Real Time Location Service (RTLS) technology themes that continues to grow and important to be examined. GPS can be utilized for outdoor areas only, but it cannot be used for tracking the user inside the building. Indoor Wi-Fi Positioning System (WPS) is a system for determining the position and counting the numbers of android smartphone users in an indoor environment using Wi-Fi technology by utilizing Received Signal Strength (RSS) which received by smarthphone in real time. This research discusses the implementation and analysis of an indoor positioning system using the fingerprinting method and K-Nearest Neighbor (K-NN) algorithm for android smartphone users with data processing on the cloud server. The android application needs to be installed on an android smartphone and the wireless indoor positioning web based application used to monitor the position and count the number of smartphone users can be access using internet network. Implemented indoor WPS able to count the numbers of smartphone user in research area perfectly. The scenario using 1.5 x 1.5 meter grid and K=1 showed position error rate 19.28% with average distance error 1.70 meter. The scenario using 3.0 x 3.0 meter grid and K = 1 showed position error percentage 13.53% with average distance error 3.0 meter. The scenarion using a 3.0 x 3.0 meter grid and K=3 showed position error percentage 12.14% with average distance error 3.0 meter. The effect of environmental changes in the positioning phase to the percentage of position errors was also carried out in this research. Keywords: Wi-Fi, Indoor Positioning, RSS, Fingerprinting, K-Nearest Neighbor

Item Type: Thesis (S2)
Call Number CD: CDT-554-20-047
Call Number: T-54-MTE-20-010
NIM/NIDN Creators: 55416120006
Uncontrolled Keywords: Wi-Fi, Indoor Positioning, RSS, Fingerprinting, K-Nearest Neighbor
Subjects: 600 Technology/Teknologi > 620 Engineering and Applied Operations/Ilmu Teknik dan operasi Terapan > 621 Applied Physics/Fisika terapan
Divisions: Pascasarjana > Magister Teknik Elektro
Depositing User: ORYZA LUVITA
Date Deposited: 21 Feb 2022 03:44
Last Modified: 18 Jun 2022 06:52
URI: http://repository.mercubuana.ac.id/id/eprint/56415

Actions (login required)

View Item View Item