PEMODELAN RAINFALL-RUNOFF DENGAN SISTEM SYARAF TIRUAN MENGGUNAKAN PERANGKAT LUNAK MATLAB

LAOLI, ALNIS GUSTIN (2018) PEMODELAN RAINFALL-RUNOFF DENGAN SISTEM SYARAF TIRUAN MENGGUNAKAN PERANGKAT LUNAK MATLAB. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
1. Cover.pdf

Download (27kB) | Preview
[img]
Preview
Text (ABSTRAK)
2. Abstrak.pdf

Download (29kB) | Preview
[img]
Preview
Text (LEMBAR PERNYATAAN)
3. Surat Pernyataan.pdf

Download (745kB) | Preview
[img]
Preview
Text (LEMBAR PENGESAHAN)
4. Lembar Pengesahan.pdf

Download (821kB) | Preview
[img]
Preview
Text (KATA PENGANTAR)
5. Kata Pengantar.pdf

Download (152kB) | Preview
[img]
Preview
Text (DAFTAR ISI)
6. Daftar Isi.pdf

Download (167kB) | Preview
[img]
Preview
Text (DAFTAR TABEL)
7. Daftar Tabel.pdf

Download (26kB) | Preview
[img]
Preview
Text (DAFTAR GAMBAR)
8. Daftar Gambar.pdf

Download (69kB) | Preview
[img]
Preview
Text (DAFTAR LAMPIRAN)
10. Daftar Lampiran.pdf

Download (52kB) | Preview
[img] Text (BAB I)
11. BAB 1.pdf
Restricted to Registered users only

Download (84kB)
[img] Text (BAB II)
12. BAB 2.pdf
Restricted to Registered users only

Download (484kB)
[img] Text (BAB III)
13. BAB 3.pdf
Restricted to Registered users only

Download (223kB)
[img] Text (BAB IV)
14. Bab 4.pdf
Restricted to Registered users only

Download (1MB)
[img] Text (BAB V)
15. BAB 5.pdf
Restricted to Registered users only

Download (25kB)
[img] Text (DAFTAR PUSTAKA)
16. Daftar Pustaka.pdf
Restricted to Registered users only

Download (105kB)
[img] Text (LAMPIRAN)
17. Lampiran.pdf
Restricted to Registered users only

Download (670kB)

Abstract

Hydrological analysis is necessary for flood control or revitalization efforts. The analysis is needed to determine the amount of plan debit or design discharge. One component in the hydrological cycle is rain runoff. Rainfall runoff components can be either run-offs or larger flows such as water flow in the river. Runoff is part of rainwater that enters and flows and enters the river body. Rainfall-runoff modeling in this study using Artificial Neural Network backpropagation method and binary sigmoid activation function. Backpropagation is an inherited learning algorithm and is commonly used by perceptrons with multiple layers to change the weights associated with neurons in the hidden layer. Backpropagation algorithm uses error output to change its weight values in backward direction. The location of the review is the Ciujung River Basin (DAS), the data used are rainfall and debit data of Ciujung River from 2011-2017. Artificial neural networks are information processing systems with characteristics and performance that are close to biological nerves. . This artificial neural system method is useful only for real time not for flooding back up. Based on the results of the training and simulation model 1 obtained the value of R2: 2012 = 0.85102; 2013 = 0.78661; 2014 = 0.81188; 2015 = 0.77902; 2016 = 0.7279. In model 2 the value of R2 = 0.8724 is obtained. In model 3 obtained the value of R2: January = 0.96937; February = 0.92984; March = 0.90666; April = 0.92566; May = 0.9128; June = 0.87975; July = 0.85292; August = 0.95943; September = 0.88229; October = 0.90537; November = 0.93522; December = 0.9111. With Mean Squared Error (MSE) averaging close to 0. If the data used for training more, the artificial neural network will result in a larger R2 value. Keywords: artificial neural network; rainfall-runoff; backpropagation; matlab Analisa hidrologi sangat diperlukan untuk upaya pengendalian banjir atau revitalisasi. Analisa tersebut diperlukan untuk menentukan besarnya debit rencana atau debit desain. Salah satu komponen dalam siklus hidrologi adalah limpasan hujan. Komponen limpasan hujan dapat berupa run-off (aliran permukaan) ataupun aliran yang lebih besar seperti aliran air di sungai. Runoff merupakan bagian air hujan yang masuk dan mengalir dan masuk dalam badan sungai. Pemodelan rainfall-runoff pada penelitian ini menggunakan Jaringan Syaraf Tiruan metode backpropagation dan fungsi aktivasi sigmoid biner. Backpropagation merupakan algoritma pembelajaran yang terwarisi dan biasanya digunakan oleh perceptron dengan banyak lapisan untuk mengubah bobot-bobot yang terhubung dengan neuron-neuron yang ada pada lapisan tersembunyinya. Algoritma Backpropagation menggunakan error output untuk mengubah nilai-nilai bobotnya dalam arah mundur (backward). Lokasi tinjauan adalah Daerah Aliran Sungai (DAS) Ciujung, data yang digunakan adalah data curah hujan dan debit Sungai Ciujung dari tahun 2011-2017. Jaringan syaraf tiruan adalah sistem pemroses informasi dengan karakteristik dan performa yang mendekati syaraf biologis. . Metode sistem syaraf tiruan ini berguna hanya untuk real time bukan untuk banjir kala ulang. Berdasarkan hasil training dan simulasi model 1 didapatkan nilai R2 : 2012 = 0.85102; 2013 = 0.78661; 2014 = 0.81188; 2015 = 0.77902; 2016 = 0.7279.Pada model 2 didapat nilai R2 = 0.8724 . Pada model 3 didapat nilai R2 : Januari = 0.96937; Februari = 0.92984; Maret = 0.90666; April = 0.92566; Mei = 0.9128; Juni = 0.87975; Juli = 0.85292; Agustus = 0.95943; September = 0.88229; Oktober = 0.90537; November = 0.93522; Desember = 0.9111. Dengan nilai Mean Squared Error (MSE) rata-rata mendekati 0. Jika data yang digunakan untuk training lebih banyak, maka jaringan syaraf tiruan akan menghasilkan nilai R2 yang lebih besar. Kata Kunci: Jaringan syaraf tiruan; rainfall-runoff; backpropagation; matlab

Item Type: Thesis (S1)
Call Number CD: FT/SIP. 19 089
Call Number: ST/11/18/084
NIM/NIDN Creators: 41114010051
Uncontrolled Keywords: Jaringan syaraf tiruan; rainfall-runoff; backpropagation; matlab
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika > 004.6 Interfacing and Communications/Tampilan Antar Muka (Interface) dan Jaringan Komunikasi Komputer > 004.65 Computer Communications Networks/Jaringan Komunikasi Komputer
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 005 Computer Programmming, Programs, Data/Pemprograman Komputer, Program, Data > 005.7 Data in Computer Systems/Data dalam Sistem-sistem Komputer > 005.75 Specific Types of Data Files and Databases/Jenis Spesifik File Data dan Pangakalan Data > 005.754 Network Databases/Pangakalan Data Jaringan
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.3 Artificial Intelligence/Kecerdasan Buatan
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.3 Artificial Intelligence/Kecerdasan Buatan > 006.32 Neural Nets (Neural Network)/Jaringan Saraf Buatan
Divisions: Fakultas Teknik > Teknik Sipil
Depositing User: Dede Muksin Lubis
Date Deposited: 12 Nov 2018 01:26
Last Modified: 10 Sep 2022 02:40
URI: http://repository.mercubuana.ac.id/id/eprint/45525

Actions (login required)

View Item View Item