DESAIN DAN ANALISIS MATERIAL PEMBANGKIT LISTRIKTENAGA MIKRO HIDRO DENGAN TURBIN ULIR PADA SUNGAI CIGIRANG DESA CILANGKAP, SUMEDANG MENGGUNAKAN SOFTWARE SOLIDWORKS

UNIVERSITAS
GANANG FATURAHMAN
NIM: 41314010042 A A

PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MERCU BUANA JAKARTA 2018

LAPORAN TUGAS AKHIR

DESAIN DAN ANALISIS MATERIAL PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO DENGAN TURBIN ULIR PADA SUNGAI CIGIRANG DESA CILANGKAP, SUMEDANG MENGGUNAKAN SOFTWARE SOLIDWORKS

DIAJUKAN UNTUK MEMENUHI SYARAT KELULUSAN MATA KULIAH TUGAS AKHIR PADA PROGRAM SARJANA STRATA SATU (S1) AGUSTUS 2018

LEMBAR PERNYATAAN

Yang bertanda tangan dibawah ini:

Nama : Ganang Faturahman

NIM : 41314010042

Program Studi: Teknik Mesin

Fakultas : Teknik

Judul : Desain dan Analisis Material Pembangkit Listrik Tenaga Mikro Hidro

dengan Turbin Ulir pada Sungai Cigirang Desa Cilangkap, Sumedang

Menggunakan Software Solidworks

Dengan ini menyatakan bahwa hasil penulisan Laporan Tugas Akhir yang telah saya buat merupakan hasil karya pribadi dan benar akan keasliannya. Apabila di kemudian hari ditemukan bukti bahwa hasil penulisan Laporan Tugas Akhir ini merupakan hasil plagiat terhadap karya orang lain, maka saya bersedia akan bertanggungjawab dan menerima sanksi sesuai dengan tata tertib Universitas Mercu Buana.

Demikian pernyataan ini saya buat dalam keadaan sadar dan tanpa paksaan dari pihak manapun.

MERCU BUANA

Jakarta, 1 Agustus 2018

6000 ENAM RIBU RUPIAH

6A50AFF226510079

(Ganang Faturahman)

LEMBAR PENGESAHAN

Desain Dan Analisis Material Pembangkit Listrik Tenaga Mikro Hidro Dengan Turbin Ulir Pada Sungai Cigirang, Desa Cilangkap, Sumedang Menggunakan Software Solidworks

Disusun Oleh:

Nama : Ganang Faturahman

NIM : 41314010042

Program Studi : Teknik Mesin

Telah diperiksa dan disetujui oleh pembimbing

Pada Tanggal: 24 - 08 - 2018

BUANA Mengetahui,

Pembimbing

(Prof. Dr. Ing. Ir. Darwin Sebayang)

Koordinator Tugas Akhir

(Haris Wahyudi ST. M. Sc)

PENGHARGAAN

Dengan menyebut nama Allah SWT yang Maha Pengasih lagi Maha Panyayang, saya panjatkan puja dan puji syukur atas kehadirat-Nya, yang telah melimpahkan rahmat, hidayah, dan inayah-Nya kepada saya, sehingga saya dapat menyelesaikan Tugas Akhir ini dengan baik dan tepat waktu.

Tugas Akhir ini telah saya susun dengan maksimal dan mendapatkan bantuan dari berbagai pihak sehingga dapat memperlancar pembuatan Tugas Akhir ini. Untuk itu saya menyampaikan banyak terima kasih kepada semua pihak yang telah berkontribusi dalam pembuatan Tugas Akhir ini.

Ucapan terima kasih saya sampaikan kepada:

- Allah SWT yang telah memberikan kesehatan jasmani dan rohani sehingga saya dapat menyelesaikan Tugas Akhir ini.
- Kedua orangtua yang telah memberikan dukungannya baik secara moral maupun mental sehingga saya mendapatkan semangat yang luar biasa dalammenyelesaikan Tugas Akhir ini.
- Bapak Prof. Dr. Ing. Ir. Darwin Sebayang, selaku pembimbing dalam penyusunan Tugas Akhir ini sehingga saya merasa lebih mudah di dalam menyelesaikan penyusunan Tugas Akhir.
- 4. Bapak Haris Wahyudi ST. M. Sc. selaku koordinator tugas akhir karena telah memberikan kesempatan kepada saya untuk mengikuti sidang tugas akhir di semester ini. Serta telah membantu dan membimbing saya dalam menyelesaikan tugas akhir saya.
- Bapak Alief Avicena, selaku dosen Teknik Mesin yang telah menyediakan waktunya untuk membimbing dan memberikan banyak masukan dalam menyelesaikan Tugas Akhir ini.
- Puspita Eka Rohmah selaku penyemangat serta selalu menemani saya didalam menyelesaikan Tugas Akhir ini sehingga penyusunan Tugas Akhir ini dapat selesai tepat waktu.
- Terimakasih juga saya sampaikan kepada teman teman seperjuangan yaitu Muhammad Ranovaldi, Dony Sanjaya, Alfian Rizki dan seluruh Keluarga Besar Teknik

Mesin Universitas Mercu Buana Angkatan 2014 khususnya serta seluruh Keluarga Besar Teknik Mesin Universitas Mercu Buana umumnya yang tidak bisa disebutkan satu – persatu yang turut membantu baik secara fisik dan nonfisik dalam menyelesaikan Tugas Akhir ini.

Saya menyadari sepenuhnya bahwa masih ada kekurangan baik dari segi susunan kalimat maupun tata bahasanya. Oleh karena itu dengan tangan terbuka, saya menerima segala tegur, sapa, saran dan kritik dari pembaca agar saya dapat memperbaiki Tugas Akhir ini.

Akhir kata saya berharap semoga Tugas Akhir ini dapat menjelaskan secara ringkas dan jelas isi dan kesimpulan dari maksud serta tujuan disusunnya Tugas Akhir ini. Dan tentunya, hasil dari dari penyusunan Tugas Akhir ini dapat diterima baik oleh semua pihak yang membacanya.

Jakarta, 1 Agustus 2018

Ganang Faturahman

MERCU BUANA

DAFTAR ISI

LEMBAR	PERNYATAAN	iii			
LEMBAR PENGESAHAN PENGHARGAAN ABSTRAK		iv v vii			
			DAFTAR	ISI	ix
			DAFTAR GAMBAR		xii
DAFTAR	TABEL	xiii			
BAB I	PENDAHULUAN	1			
1.1	Latar Belakang	1,			
1.2	Rumusan Masalah	5			
1.3	Tujuan	5			
1.4	Batasan Dan ruang Lingkup Penelitian	6			
	1.4.1 Batasan Masalah	6			
	1.4.2 Ruang Lingkup Penelitian	6			
1.5	Sistematika Penulisan	7			
BAB II	TINJAUAN PUSTAKAS I T A S	8			
2.1	Pendahuluan U BUANA	8			
2.2	Energi Terbarukan	8			
2.3	Mikrohidro	10			
	2.3.1 Sejarah PLTMH	11			
	2.3.2 Prinsip Kerja PLTMH	12			
	2.3.3 Konversi Energi PLTMH	12			
	2.3.4 Bagian-Bagian PLTMH	13			
	2.3.5 Metode Pemilihan Tempat PLTMH	14			
2.4	Perbandingan Antara Berbagai Turbin	15			
2.5	Turbin Ulir	17			
2.3	2.5.1 Sejarah Turbin Ulir	17			
	2.5.2 Keunggulan Turbin Ulir	18			

2.6	Solidworks	18
	2.6.1 Stress Analysis	19
	2.6.2 Frame Analysis	19
2.7	Konsep Tegangan-Regangan	20
2.8	Faktor Keamanan	21
2.9	Tegangan Statis Dan Dinamis	22
2.10	Penelitian Terdahulu	23
BAB I	III METODOLOGI PENELITIAN	25
3.1	Perancangan	25
3.2	Alat	25
3.3	Diagram Alir Penelitian	26
3.4	Pengumpulan Data Awal	27
3.5	Prosedur Penelitian	27
	3.5.1 Prosedur Penelitian Tahap Desain	27
	3.5.2 Tahap Permodelan	29
	3.5.3 Pemasukan Data Material	30
	3.5.4 Amsusi Pembebanan	30
	3.5.5 Pengujian	30
	3.5.6 Interpretasi Hasil	31
BAB	IV HASIL DAN PEMBAHASAN A A	32
4.1	Tahap Pembuatan Desain	32
4.2	Hasil Meshing	32
4.2	Hasil Analisis Tegangan Maksimum (Von Mises Stress)	40
	4.2.1 Pada Turbin	40
	4.2.2 Pada Casing Turbin	40
4.3	Hasil Analisis Displacement maksimum	41
	4.3.1 Pada Turbin	41
	4.3.2 Pada Casing Turbin	42 42
4.4	Hasil Analisis Regangan Maksimum	42
	4.4.1 Pada Turbin	43
	4.4.2 Pada Casing Turbin	75

4.5	Hasil Analisis Safety Factor	44
	4.5.1 Pada Turbin	44
	4.5.2 Pada Casing Turbin	45
BAB V	KESIMPULAN DAN SARAN	46
5.1	Kesimpulan	46
5.2	Saran	47
DAFTAR	PIISTAKA	48

DAFTAR GAMBAR

No. Gam	bar — — — — — — — — — — — — — — — — — — —	Halaman
1.1	Rencana Pembangunan PLTMH tahun 2005 - 2025	3
1.2	Kondisi Danau Cigirang	4
1.3	Kondisi Saluran Air Danau Cigirang	5
2.1	Pembangkit Listrik Dunia oleh Bahan Bakar	9
2.2	Skema Turbin Ulir	12
2.3	Bagian PLTMH	13
2.4	Hasil Penelitian Zachary	24
3.1	Diagram Alir Penelitian	26
3.2	Desain 2D Turbin PLTMH Cigirang Hasil Perhitungan (Samping)	28
3.3	Desain 2D Turbin PLTMH Cigirang Hasil Perhitungan (Depan)	28
3.4	Desain 2D Casing Turbin PLTMH Cigirang Hasil Perhitungan	28
3.5	Desain 2D Casing Turbin PLTMH Cigirang Hasil Perhitungan	28
4.1	Desain PLTMH Cigirang	35
4.2	Hasil Meshing Bagian CasingSebelum Mesh Control	36
4.3	Hasil Meshing Casing Turbin Setelah Mesh Control	37
4.4	Hasil Meshing Bagian Turbin Sebelum Mesh Control	38
4.5	Hasil Meshing Bagian Turbin Setelah Mesh Control	39
4.6	Hasil Analisis Tegangan Maksimum Pada Turbin	40
4.7	Hasil Analisis Tegangan Maksimum Pada Casing Turbin	41
4.8	Hasil Analisis Displacement Pada Turbin	41
4.9	Hasil Analisis Displacement Pada Casing Turbin	42
4.10	Hasil Analisis Regangan Pada Turbin	43
4.11	Hasil Analisis Regangan Pada Casing Turbin	43
4.12	Hasil Analisis Safety Factor Pada Turbin	44
4.12	Hasil Analisis Safety Factor Pada Casing Turbin	45

DAFTAR TABEL

No. Ta	abel	Halaman
2.1	Perbandingan Antara Berbagai Turbin	15
3.1	Spesifikasi Turbin dan Casing	30
4.1	Desain Komponen PLTMH Cigirang dan Fungsinya	32
4.2	Spesifikasi Hasil Mesh Sebelum Mesh Control	36
4.3	Spesifikasi Hasil Mesh Casing Setelah Mesh Control	37
4.4	Spesifikasi Hasil Mesh Turbin Sebelum Mesh Control	38
4.5	Spesifikasi Hasil Mesh Turbin Setelah Mesh Control	39

