

A COMPARISON ANALYSIS OF KNN AS A PREDICTIVE MODEL FOR SCOPE-1 GHG EMISSIONS FROM INDONESIAN CEMENT MANUFACTURERS TO RANDOM FOREST, AND MLR

FINAL THESIS

DINDA FATIMAH KAUTSARINA 41521010114

UNIVERSITAS MERCU BUANA

DEPARTMENT OF INFORMATICS ENGINEERING FACULTY OF COMPUTER SCIENCE UNIVERSITAS MERCU BUANA JAKARTA 2025

A COMPARISON ANALYSIS OF KNN AS A PREDICTIVE MODEL FOR SCOPE-1 GHG EMISSIONS FROM INDONESIAN CEMENT MANUFACTURERS TO RANDOM FOREST, AND MLR

DINDA FATIMAH KAUTSARINA

41521010114

MERCU BUANA

Submitted as one of the requirements to receive a bachelor's degree

DEPARTMENT OF INFORMATICS ENGINEERING FACULTY OF COMPUTER SCIENCE UNIVERSITAS MERCU BUANA JAKARTA

2025

STATEMENT OF ORIGINALITY

I, the undersigned:

Name : DINDA FATIMAH KAUTSARINA

NIM : 41521010114

Department : Teknik Informatika

PREDICTIVE MODEL FOR SCOPE-1 GHG

EMISSIONS FROM INDONESIAN CEMENT

Research Proposal Title : MANUFACTURERS USING KNN

I declare that this Final Thesis is my own work and not plagiarism and that I have correctly stated all sources cited and referenced. If it is found that there are elements of plagiarism in my Final Thesis, I am prepared to face the academic sanctions applicable at Mercu Buana University.

Jakarta, 8 Juli 2025

Dinda Fatimah Kautsarina.

MERCU BUANA

APPROVAL PAGE

The undersigned hereby declares that the final thesis report from the student:

: DINDA FATIMAH KAUTSARINA

Name NIM

41521010114

Teknik Informatika

Department

PREDICTIVE MODEL FOR SCOPE-1 GHG

Research Proposal Title

: EMISSIONS FROM INDONESIAN CEMENT

MANUFACTURERS USING KNN

Has been successfully defended at the hearing before the Board of Examiners and accepted as part of the requirements needed to obtain a Bachelor's degree in the Informatics Engineering Study Program, Faculty of Computer Science, Universitas Mercu Buana.

Approved by:

Supervisor

:Ir. Emil R. Kaburuan, Ph.D., IPM., PMP,

CISM, ASEAN Eng., SMIEEE

NIDN

: 0429058004

Head Examiner: Ilham Nugraha, S.Kom., M.Sc

NIDN

:0307098904

Examiner 1

: Dr. Hadi Santoso, S.Kom., M.Kom.

NIDN

Dr. Ir. Eliyani, M.Kom

0321026901

Jakarta,

Acknowledged by,

Dean

Dr. Bambang Jokonowo, S.Si., MTI

NIDN: 0320037002

Head of Study Program

Dr. Hadi Santoso, S.Kom., M.Kom

NIDN: 0225067701

ACKNOWLEDGMENTS

Praise be to God Almighty for His grace and blessings, enabling the author to complete this research proposal. This proposal is a requisite for the completion of the Undergraduate Program (S1) in the Department of Information Technology at Mercu Buana University.

The author realizes that this research proposal is far from perfect, as true perfection belongs only to God Almighty. Therefore, constructive suggestions and feedback are always welcomed with open arms. It is with the support, motivation, assistance, guidance, and prayers from many parties that this proposal has been completed. The author extends heartfelt gratitude to:

- 1. Prof. Dr. Andi Adriansyah, M.Eng., Rector of Mercu Buana University.
- 2. Dr. Bambang Jokonowo, S.Si., MTI, Dean of the Faculty of Computer Science.
- 3. Dr. Hadi Santoso, S.Kom., M.Kom., Head of the Information Technology Study Program at Mercu Buana University.
- 4. Emil Robert Kaburuan, S.T., M.A., Ph.D., MPTI supervisor, who has provided guidance, motivation, time, effort, and thought, ensuring the research proposal was well-scheduled.
- 5. My parents and family, who have always supported and encouraged me throughout my studies at Mercu Buana University.
- 6. All my friends at UMB, Calosa Ballet, and my IISMA dorm-mates at UNISI, who have supported and motivated me during the making of this thesis.

Lastly, the author hopes that God Almighty will repay the kindness and always bestow His grace, guidance, and long life upon us all. Amen. Thank you.

Jakarta, 8 Juli 2025

Dinda Fatimah Kautsarina

STATEMENT OF FINAL PROJECT PUBLICATION CONSENT FOR ACADEMIC PURPOSES

As an academic community member of Universitas Mercu Buana, I, the undersigned:

Name : DINDA FATIMAH KAUTSARINA

NIM : 41521010114

Department : Teknik Informatika

A COMPARISON ANALYSIS OF KNN AS A PREDICTIVE MODEL FOR SCOPE-I GHG

Research Proposal Title : EMISSIONS FROM INDONESIAN CEMENT

MANUFACTURERS TO RANDOM

FOREST, AND MLR

Hereby declare that, in the interest of knowledge, I grant and approve Universitas Mercu Buana to have a Non-exclusive Royalty-Free Right to my final project report, for use as scientific or non-scientific study material by Universitas Mercu Buana.

Universitas Mercu Buana has the right to store, convert/transfer formats, manage in the form of a database, distribute, and display it in softcopy form for academic purposes within Universitas Mercu Buana, such as in Theses/Papers/Dissertations, as well as in other media, without the need to request my permission, provided that my name remains stated as the author and copyright holder.

This statement is made truthfully.

Jakarta, 8 July 2025 Declarant,

Dinda Fatimah Kautsarina

ABSTRACT

Nama : DINDA FATIMAH KAUTSARINA

NIM : 41521010114

Program Studi : Teknik Informatika

A COMPARISON ANALYSIS OF KNN AS A

PREDICTIVE MODEL FOR SCOPE-1 GHG

Judul Proposal Penelitian : EMISSIONS FROM INDONESIAN CEMENT

MANUFACTURERS TO RANDOM FOREST,

AND MLR

Dosen Pembimbing : Emil Robert Kaburuan, S.T., M.A., Ph.D.

Despite being a significant contributor to the nation's GDP and expected to grow, the cement industry poses substantial environmental challenges, contributing significantly to GHG emissions and climate change. This study is aimed at developing and comparing three predictive models, namely the K-Nearest Neighbor (KNN), Random Forest, and Multivariable Linear Regression (MLR) to create Scope-1 CO₂ emissions projection from Indonesian cement manufacturers. Using five years of historical data from cement plants across Indonesia, this study has identified key emission factors and the most suitable machine learning model to predict Scope-1 CO₂ emissions. Each model was evaluated using Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R2 to assess their accuracy. Furthermore, this study also proposed an integration of these machine learning models into conventional emission calculation methods to provide a robust emissions projection framework that supports the Indonesian Net Zero goal.

Key words: GHG Emission, K-Nearest Neighbors (KNN), Machine Learning, Emission Prediction

ABSTRACT

Name : DINDA FATIMAH KAUTSARINA

NIM : 41521010114

Study Program : Teknik Informatika

A COMPARISON ANALYSIS OF KNN AS A

PREDICTIVE MODEL FOR SCOPE-1 GHG

Research Proposal Title : EMISSIONS FROM INDONESIAN CEMENT

MANUFACTURERS TO RANDOM FOREST,

AND MLR

Supervisor : Emil Robert Kaburuan, S.T., M.A., Ph.D.

Despite being a significant contributor to the nation's GDP and expected to grow, the cement industry poses substantial environmental challenges, contributing significantly to GHG emissions and climate change. This study is aimed at developing and comparing three predictive models, namely the K-Nearest Neighbor (KNN), Random Forest, and Multivariable Linear Regression (MLR) to create Scope-1 CO₂ emissions projection from Indonesian cement manufacturers. Using five years of historical data from cement plants across Indonesia, this study has identified key emission factors and the most suitable machine learning model to predict Scope-1 CO₂ emissions. Each model was evaluated using Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R2 to assess their accuracy. Furthermore, this study also proposed an integration of these machine learning models into conventional emission calculation methods to provide a robust emissions projection framework that supports the Indonesian Net Zero goal.

Keywords: GHG Emission, K-Nearest Neighbors (KNN), Machine Learning, Emission Prediction

TABLE OF CONTENTS

TITLE P	AGE	. i
STATEN	MENT OF ORIGINALITY	ii
APPRO	VAL SHEET	iii
ACKNO	WLEDGMENTS	iv
STATEN	MENT OF APPROVAL FOR THE PUBLICATION	.v
ABSTRA	ACT	vi
ABSTRA	ACTv	⁄ii
TABLE	OF CONTENTSv	iii
LIST OF	TABLES	X
LIST OF	FIGURES	хi
LIST OF	ATTACHMENTS	ζii
CHAPTI	ER I INTRODUCTION	
1.1	Background	1
1.2	Problem Statement	3
1.3	Research Objectives	
1.4	Research Benefits	
1.5	Research Limitations	5
CHAPTI	ER II LITERATURE REVIEW	6
2.1	Main Theory	6
2.1.1	Main Theory CO ₂ from Raw Material Calcination	6
2.1.2	CO ₂ from Kiln Fuels	7
2.2	Supporting Theory	8
2.2.1	K – Nearest Neighbor	8
2.2.2	Random Forest	9
2.2.3	Multivariable Linear Regression	9
2.3	Previous Research	0
2.4	Research Gap	15
CHAPTI	ER III RESEARCH METHODS	16
3.1	Research Approach	16
3.2	Research Design.	16

3.3	Research Subjects	17
3.4	Research Instruments	18
3.5	Data Collection Method	18
3.6	Data Analysis	19
3.7	Research Procedure	20
3.8	Results Evaluation	22
СНАРТІ	ER IV DISCUSSIONS	23
4.1	Data Analysis and Identification of Key Emission Factors	23
4.1.1	Exploratory Data Analysis (EDA) Findings	23
4.1.2	Feature Engineering	27
4.1.3	Key Features in Specific Net CO ₂ Emissions	29
4.2	Performance Evaluation of K-Nearest Neighbor (KNN) in Emis	sion
Predic	tion	29
4.2.1	KNN Model Training and Validation Results	29
4.2.2	Comparison with Other Machine Learning Algorithms	30
4.3	Proposed Integration with Conventional Emissions Calculation	35
CHAPTI	ER V CONCLUSIONS & SUGGESTION	
5.1	Conclusions	
5.2	Suggestions	38
Referenc	es A S	41
	MENT	

LIST OF TABLES

Table 2.1 Typical components of raw materials in the calcination proce	ss [14] (
Table 2.2 Related Research	11
Table 4.1 Scope 1 CO ₂ Emission Factors Descriptive Analysis	23
Table 4.2 KNN Model Evaluation Results	30
Table 4.3 Algorithm Performance Comparison	31

LIST OF FIGURES

Figure 3.1 Simple cement manufacturing processes showing the CO ₂ generation
systems [14]
Figure 3.2 Research flow for a predictive model using machine learning algorithms
[14]
Figure 4.1 Distribution of data for Scope-1 CO ₂ Emissions
Figure 4.2 Correlation Matrix of the Features and the Target Variable, Specific Net
CO ₂ Emissions
Figure 4.3 ACF and PACF of each feature in the input dataset
Figure 4.4 Correlation matrix post further pre-processing using ACF and PACF.
Figure 4.5 Correlation Matrix of the Engineered Features with the Target Variable
Figure 4.6 A comparison of the training and testing R ² values by model 31
Figure 4.7 Specific CO ₂ Projection compared to baseline 2010 - 2030 at 75% CCR
and TSR 5% [7]
Figure 4.8 Specific Net CO ₂ Projection using KNN
Figure 4.9 Specific Net CO ₂ Projection using Random Forest
Figure 4.10 Specific Net CO2 Projection using Multivariable Linear Regression35
MERCU BUANA

LIST OF ATTACHMENTS

Attachment 1 Kartu Asistensi	44
Attachment 2 Curriculum Vitae	45
Attachment 3 BNSP Certificate	46
Attachment 4 Turnitin Results	47

