
LAMPIRAN

GUIDANCE COMPETENCY ASSESMENT

	Date :
	CHART OF COMPETENCY LEVELS
SKILL	
LEVEL	Description / Attributes/ Comments
1	Trainee, basically unskilled; is learning how to operate equipment; unsure of him/her delft, need almost continuous supervision; may be unable to learn.
	may co unacio to iouri.
	Can operate equipment, knows the basic process.
	Needs occasional assistant. Does not know equipment
2	very well rarely. Recognize equipment malfunction or quality problem.
3	Operator equipment with confidence and need very little assistance. Recognize equipment malfunction or quality problem, but not correct them.
	Know equipment very well and operates it with a high level of
	confidence. Needs no supervision. Understand relationship between
	equipment performance and quality / productivity. Recognizes
4	equipment malfunctions and makes corrections/ adjustments. Could supervise others.
	Experienced operator who know equipment and process very well. Supervises and trains others. Highly aware of equipment malfunctions, even of potential
	problems. Makes corrections/adjustments, inspects equipment and,
	make minor renaire. Highly aware of equipment condition/quanty and
5	productivity relationships. Potential supervisor/ team leader.
	<u> </u>
NOTE:	

CERTIFICATION CHECKLIST

Oxidation Field Operator Certification Checklist

General

Task Description	Trainees Initials	Trainers Initials	Date
Know how to access and utilize all safety and training information such as plant safety regs, Standard Operating Procedures, MSDS sheets, Process Specific manuals, etc.			
Describe the responsibilities and duties of an operator and list the things that he should do when he patrols the unit. Demonstrate proper use of the two-way radio			
communications system Be able to give a brief description of the Oxidation process			
including basic process flows. Describe the proper way to make shift relief including the types of information that should be discussed.			

Safety and Environmental

Task Description	Trainees Initials	Trainers Initials	Date
Know how to locate safety equipment in the area including safety showers, fire hoses and extinguishers.			
Describe the hazards of chemicals used in the Oxidation			
process Know the safe operating pressures and temperatures of			
hoses used in the unit List the PPE required for performing routine duties in the			
Oxidation unit.			
Be familiar with the plant equipment lock-out procedure.			
Complete the Oxidation weekly Fire and Safety Checklist.			

Process Air Compressor System

Task Description	Trainees Initials	Trainers Initials	Date
Explain the purpose of the Process Air Compressor and give a brief description of the basic process flows. List the major equipment in the system with their equipment numbers and explain their functions. Explain the purpose of the gas expander and describe the			
basic flow through the system. Explain the purpose of the steam turbine and describe the basic flow through the system. Understand compressor system trips and shutdowns.			

Demonstrate the proper method for making a walk-thru of			
the compressor area and fill out the patrol sheet			
Demonstrate the ability to perform a system start-up using			
the SOP			
Demonstrate the procedure for placing the expander in			
service and explain the purpose for the gas heaters.			
Demonstrate the procedure for placing the turbine in	·		
service and explain the purpose for maintaining a vacuum			
on the turbine "boot".			
Locate the major instrumentation, control valves etc, in the			
field and on DCS			
Demonstrate the procedure for placing the turbine bypass			
condenser in service.			
What is the purpose of the Off-gas dryers?	<u>_</u>		
Give a brief description of the operation and flows through			
the off-gas dryer system.			
Demonstrate the proper procedure for placing the off-gas			
dryer system in service.	<u> </u>		
Give a brief description of the condensate collection			
system	<u> </u>		
Demonstrate placing the condensate system in service			
Collect a set of condensate samples and perform routine			
lab analysis. Explain the purpose of the analysis and how			
to control them.			
Explain why we control pH on the condensate system and			
what could cause a drop in pH.			
What could cause a grown controls/letdown			
Explain the steam system controls/letdown		-	

Front End Section - Feed Mix System

Task Description	Trainees Initials	Trainers Initials	Date
Give a brief description of the feed mix system including			_
the various process flows. List all of the major equipment in the feed mix system			_
Demonstrate the proper procedure for unloading a			
shipment of liquid catalyst. List the proper PPE. Describe the HBr storage and transfer system, listing major			
equipment and process flows. Demonstrate the proper procedure for unloading an HBr			
shipment and list the proper PPE. Explain the purpose of the ASOMA analyzer system and			_
demonstrate placing it in service.			
in service. Switching pumps with the reactor of inter-			
for maintenance including electrical lock-out. Describe the reactor "hot charge" system including a	 		
description of the flows. Perform a walk-thru of the feed mix area and fill out a			_
			
Locate all major instrumentation and controllers for the area in the field and on DCS. Know the location of all safety equipment in the			

area(safety showers, fire hoses and extinguishers)	
Demonstrate the proper procedure for taking unit samples	
and list the proper PPE.	
into tise tite proper 11 2.	

Front End - Reactor/Crystallizer Section

Task Description	Trainees Initials	Trainers Initials	Date
Explain the function of the Oxidation reactor			
List all of the major equipment in the reactor system and			
Describe the function of the reactor overhead condenser system and explain the process flows through the system			
Give a brief description of the glycerin seal system.			
Give a brief description of the reactor oxygen analyzers.			
Demonstrate the proper method for placing the reactor in			
service using the SOP Know the effects of pressure, temperature, and WWD on			
the reactor.			_
Demonstrate how to place the reactor on "hot hold"	 		
Evoluin the process of flushing a reactor dump line.	 		
Locate the major instrumentation and controllers in the		<u> </u>	
field and on DCS for the reactor system.	 		
Demonstrate recetting the XV valves after a IIID.	 		
Evaluin the function of the Oxidation crystainzer system.			
1 in all of the equipment and their edulpment numbers.	<u> </u>		
Explain the purpose of secondary oxidation and its effect			_}_
on product quality. Explain the purpose and operation of the ejector system on			
the third crystallizer. Demonstrate placing it in service.	<u> </u>		
Know the location of all safety equipment in the area.	T		
Demonstrate the proper method for flushing a crystamzer			
transfer line. Locate all major instrumentation and controllers in the			
. 11'	 		
Demonstrate placing the various control valves in the reactor/crystallizer area in and out of hand-jack			L_

Front End – Reactor/Crystallizer Section (cont.)

				1	
ĺ	Task Description	Trainees Initials	Trainers Initials	Date	
	Explain the process for caustic washing the reactor in preparation for entry and maintenance. Explain how to identify blinding locations and how to safely prepare lines for blinding What is the proper PPE for maintenance to use for installing blinds.				

Front End – High Pressure Absorber

Task Description	Trainees Initials	Trainers Initials	Date
Explain the function of the High Pressure Absorber.			
List the major equipment and their numbers and give a brief description of their functions.			
Describe the process flows through the system.			
Explain the pressure control system. Demonstrate placing the High Pressure Absorber in service using the SOP.			-
Locate all of the major instrumentation and controllers in the field and on DCS.			_}

PTA Field Operator Certification Checklist

General

Task Description	Trainees Initials	Trainers Initials	Date
Know how to access and utilize all safety and training information such as plant safety regs, Standard Operating Procedures, MSDS sheets, Process Specific manuals, etc. Describe the responsibilities and duties of an operator and list the things that he should do when he patrols the unit. Demonstrate proper use of the two-way radio			
Be able to give a brief description of the PTA process including basic process flows. Describe the proper way to make shift relief including the types of information that should be discussed.			

Safety and Environmental

			1 1
Task Description	Trainees Initials	Trainers Initials	Date
Know how to locate safety equipment in the area including safety showers, fire hoses and extinguishers. Describe the hazards of chemicals used in the PTA process Know the safe operating pressures and temperatures of			
List the PPE required for performing routine duties in the PTA unit.			
Be familiar with the plant against the familiar with the plant equipment lock-out procedure. Be familiar with the plant permitting procedure. Complete the PTA weekly Fire and Safety Checklist.			

BF-500A/B and BD-500

Task Description	Trainees Initials	Trainers Initials	Date
Explain the purpose of CTA silos and give a brief			
description of the basic process flow.	 		
List the major equipment in the system with their			
equipment numbers and explain their functions.	 		
Explain the purpose of the silo's vent scrubber B1-500.	 		
Explain the control system of the density meter.	 		
Understand the screw and rotary lock inter Lock system			
Demonstrate the proper method for the density meters	T		
Q 1 ·			
flushing. Demonstrate the proper method for making a walk-through			
of the silo and feed mix drums area and fill out the patrol			
sheet.			
Explain the purpose of the circulation system of BG-			
501 A/B discharge line and give a brief description of and	\		
	+		
Explain the purpose of the BH-521A/B and give a biter	ì		
	 		
The the express of the vacuum system on the bb-soc.			_
n 1 ' L to blonding from NF+JUUA and Di South	-\	_+	
o u of food miv sample and Deriving tourne to	l		
analysis. Explain purpose of the analysis and how to		<u> </u>	
• · · I			I
Demonstrate the proper procedure of the feed mix pumps			
			
Explain the unit on flush method by using the recycle			l
<u> </u>		_+	
solvent. Explain the purpose of fluffing gas at CTA silo BF-500			
- ma			
A/B?. Demonstrate or explain how to determine the %TS by	_		
Demonstrate or explain now to detail nee?		_+	
visual check and when it will use?.			
			-+
	- 		

Sundyne pump and Pre-heaters

Task Description	Trainees Initials .	Trainers Initials	Date
Explain the purpose of the Sundyne Pump and give a description of the basic process flow. Understand the Sundyne system trips and shutdown Explain the start-up permissive of the Sundyne and seal			
water system Demonstrate the procedure for placing the Sundyne in service. Explain the system on flush operation and how to relate the sundyne Explain the purpose of the pre-heater and give a			

description of the basic process flow.	<u> </u>	
Explain the process heating up system and the condensate		
When the mechanical seal of sundyne pump was leaked		
Locate all major instrumentation and controllers in the field and on DCS.		
Know the location of all safety equipment in the area.(safety shower, fire hoses and extinguishers)		
How to introduce the hot oil to the BE-506A/B. How to solve problem when the condensate pot too high?		
Explain what the correlation between condensate pot level and outlet temperature of pre-heaters?.		
Explain the proper procedure of the caustic wash of BE-		
501 shell side?. Explain the possibility of hot oil flow increase on BE-		
506A B? Explain why do the hammering occur when start to heating		
up the unit, and how to avoid this matter?. Give the brief description if the pre-heater(BE-501) shell		
side has been plugged?		

Front End - Reactor/Crystallizer Section

Task Description	Trainees Initials	Trainers Initials	Date
explain the purpose of the PTA reactor and give a brief			
escription of the basic process flow explain the reactor catalist charging method and give a			
rief description of the charging proparation			
Understand the reactor shutdown system and proper	<u> </u>		
Demonstrate the procedure for placing the reactor in			
Service. Locate all major instrumentation and controllers for the			
area in the field and on DCS			
Explain the procedure the reactor catalyst states	-		
Explain the procedure reactor catalyst pull out and give a	 		
Demonstrate the Hydrogen introduce to the reactor When the delta pressure of the reactor goes increase			
when the delta pressure of the reactor general explain how to take next action. Suddenly the reactor pressure goes down explain what is			
Suddenly the reactor pressure goes down a phappened.			

Front End – Reactor/Crystallizer Section (cont.)

Task Description	Trainees Initials	Trainers Initials	Date
Explain the purpose of crystallizer and give a brief description of the basic process flow			
List major equipment in the system with their equipment			
Understand crystallizer system Hot Hold and when to do			
Explain the purpose of crystallizers vent energy system			
Explain the crystalizer pressure 28k steam			
Understand the crystallizer agitator system and grycetin			-+
Demonstrate the ability to perform a system start up using SOP			
Explain the HPW flush system for the crystallizer train			
Demonstrate the HCV of crystallizers outlet			
valves open/close at manually Explain the hot oil jacket line system for the crystallizers			
Demonstrate the ability to perform a system introduce the			
hot oil to the train lines Explain the purpose of the radio isotope active system for			
the crystallizers Explain the purpose of flush water provide system to the each crystallizers level control valves			
Explain how to control the particle size as the crystallizers			
Explain the purpose of the vent scrubber system and give a brief description of the basic process flow			
Demonstrate the proper method for making a walk- through of the vent scrubber area and fill out the patrol			
Sheet Explain the energy recovery system of the vent scrubber			
Demonstrate the proper procedure of the BG-601 A/B			
When the level of BD-601 was increased explain how to take action for this abnormal condition			
Suddenly active the PSD-601/PSV-601 of the BD-601 explain this abnormal condition but the level indicate 60% and pressure is normal	6		

Back End – Pressure centrifuges

Task Description	Trainees Initials	Trainers Initials	Date
explain the purpose of centriguges and give a brief description			
of the basic proces flow.			
List the major equipment in the system with their equipment			
numbers and explain their functions.			
and the all exerters for the centrifuges.			
Evoluin the back up system of the lube of for the centification			
Compain the Inter I ock system of the centrituges.			
Evaluin the startup permisssive of the centrifuges.			
m + + + + + + + + + + + + + + + + + + +			_ [
Perform a walk through of the centrifuges system and fill out a			_
the proper procedure for LPW flush a centifuges			
	ļ	ľ	l l
Demonstrate the proper procedure for causes of centrifuges and explain the effect of sodium contamination of			
• • · · · · · · · · · · · · · · · · · ·	 		
How to the understanding the ML was fall into the BD-702			
a il ala contribige	<u> </u>		_
G. the less active the high torque arm interlocks of the		_	
			
Explain the centrifuges ML system and give a brief description			
	 		
Demonstrate the proper procedure of BG-703A/B suction line's			
		 	- I
caustic wash Explain the purpose of MLSR system and give a description go			
the basic process flow			
Explain the dr. M system every step			_+-
Explain the proper procedure of dr. M's caustic washing			

WWT Field Operator Certification Checklist

Aeration Basin AM-710 & AM-711

	Trainees	Trainers	Date
Task Description		 	
1. Explain the purpose of the Aeration basin and give a brief description of the influent basic process flows.			
2.Explain the purpose of aerators are equipped in aeration basins. 3.What is the design of TOC load of Aeration Basin and the TOC			
degradation. 4. What do you know about Dissolve Oxygen. Explain what is the design DO in Aeration basin and What is caused			
DO High and Low. 5 What is your action if DO low. And explain what is the influence			
to Aeration system if DO low. 6. What is the purpose of Nutrient and what are the chemicals be use			
in Aeration 7. Explain the garret system and sludge age.			

	1
8. What is the normal range of TSS concentration. What is the caused if TSS high and Low and what is your action if TSS high and low. 9. What is the purpose of sludge recycle and what is the Recycle	
amount. 10.Demonstrate the proper action when Emergency shut down occurred	

Clarifier AM-712 A/B And Thickener AM-720

	Trainees	Trainers	Date
	2		ļ
Task Description		_	
1. Explain the functions of the Clarifier and process flow.			
1. Explain the functions of the Charmer			
2. Explain the purpose of Scrappers are equipped in Clarifier.			
Explain the purpose of Scrappers are equippers What is the normal TOC influent to clarifier.			
3. What is the normal TOC infident to character			
4. Explain briefly the purpose of AG-712 A/B.			
Constitution of the state of th			
5. What are the target of TSS under flow of Clarifier.			
6. What is your action it 133 tow of high street and what is 7. Explain how to measure the slider			
the normal level sludge in clarifier.			
8. Explain why polymer injected to clarifier. And what is your			l
9. What is the caused of floating stars			
action if sludge carry over. 10. What is the caused of turbidity worsens and what is your			
proper action. 11. Explain what the functions of Thickener and Described the			
12. Explain the purpose of Rake AA-720.			
13. What are the target of 133 in Times. And what is 14. Explain how to measure the sludge blanketing. And what is			
the normal level studge in Thicketer. 15. Explain if plugging occurred on suction AG-720, what is		_	
l i - Jamed worst action			_
16. What is the caused of floating sludge on surface of			
16.List sample point in Aeration Basin Area.			

Sump Area and Sampling

Still Mon and and a			
Task Description	Trainees	Trainers	Date
List all of Sanitary Sewer System in WWT of PT. AMI.			
Explain how did Pumps run in every unit of Sanitary Sewer	:		
System. (note: related with the Level of sump)			
Evaluin line of Sanitary Sewer System.			

ļ
<u> </u>

Utility Field Operator Certification Checklist

General

Task Description	Trainees Initials	Trainers Initials	Date
Know how to access and utilize all safety and training information such as plant safety regs, Standard Operating Procedures, MSDS sheets, Process Specific manuals, etc. Describe the responsibilities and duties of an operator and list the things that he should do when he patrols the unit.			
Demonstrate proper use of the two-way radio communications system Be able to give a brief description of the Utility process			<u> </u>
including basic process flows. Describe the proper way to make shift relief including the types of information that should be discussed.			

Safety and Environmental

			I
Task Description	Trainees Initials	Trainers Initials	Date
Know how to locate safety equipment in the area including safety showers, fire hoses and extinguishers. Describe the hazards of chemicals used in the Utility			
Know the safe operating pressures and temperatures of hoses used in the unit List the PPE required for performing routine duties in the			
Utility unit. Be familiar with the plant alarms and evacuation process. Be familiar with the plant equipment lock-out procedure. Be familiar with the plant permitting procedure			
Be familiar with the Diality activity schedule			

Data NO	 	Gra		Tκ	omi	etens	si	
NO.	╀-	11		+ '``	_	96	\neg	
1	+-	1		+-		13	7	
2	┼-	'		113				
_ 3 _	╂		11			59 -		
5	+	1		十		102		
6	┽╸	<u>-</u>		\top		96		
7	+		<u> </u>	┪		79	┙	
8	十		9	\top		82	_	
<u>ق</u>	+		9	L		<u>51</u>	_	
10	1		9			51_		
11			9	\rfloor _		94_		
12			9	_ _		97_		
13	3		7			78_		
1			7 7 7 7	\perp		62_	{	
1			7			49_	{	
1			7	46				
1	7		7			46_		
	8		7	_4	82			
	9			_+		77_		1
2	0		7		75			1
_	21		7		65			┨
	22		7			74		┨
12	23		6			79		1
	24_		_6			<u>66</u> 77		┧
	25_		6		├─	$-\frac{77}{67}$		1
	26_	<u> </u>	_6		├—	49		1
	<u>27</u> _	<u> </u>	6		├-	<u>- 43</u> 51		1
	28	<u> </u>	6		┼	43		7
F	29	 	<u>6</u> 6		┼-	70		┨
-	30	 			+-	69		┨
-	31	├	66		┼-	73		┨
-	32	┼			+-	85		٦
-	33	┼	5 5		+-	84		
}	34	┼─-	5		†-	64		
-	35	┼	<u>5</u>		†-	96		_
-	36	 -	5		\top	7		_
ŀ	37 38	+	5		_	7!		
}	39		5 5 5		7	6		_
	40		5		\top	4		_
	41		5 5 5 5		十	4	9	_
	42				一		9	
	43		_ _5				6	_
	44		5_				<u>5</u>	
	4:		5				<u> </u>	_
	4		5			4	<u> 49</u> _	_
		- 1						

NO	1	G	Grade	K	om	petensi		
47			5	_		54		
48	†-	5		_		58		
49	† ⁻	_	5	L		54		
50	†-		4		82			
51	\top	_	4	\prod_{-}		91		
52	+-	_	4	Τ		42]	
53	+	_	4	Τ		63		
54			4			95	1	
55			4			78		
56		4		m I		93	1	
57	$-\tau$	4				67	4	
58	-	_	4			<u>67</u>	4	
59						<u>61</u>	_	
6	$-\tau$		4	_		45	4	
6			4	_		48	4	
6		4				<u>5</u> 6	4	
1	3		4			<u> 46</u>	-	
	4		4	_		<u>46</u>	4	
-	55	 .		_		47		
1-	6					49	4	
_	37	_ .			<u> </u>	<u>85</u> _	-	
_	38		4		L	<u> 75</u> _		
_	69		4		_	<u>47</u>		
	70		4		_	<u> 57</u>		
-	71		4		Ļ	<u>57_</u> _		
_	72		4		<u> </u>	59		
	73	Γ	4		┷	62		
	74	Γ	4		1-	52		
	75	Τ	4		_	52		
	76	1	4		\perp	<u>54</u>		
t	77	1	4		54		{	
	78				┵	59		
ſ		79 4			54			
Ī	80	\perp	<u>4</u>		4	49_		
	81		4_			<u>53</u>		
ĺ	82		4			54		
	83		4_		_}	42_		
	84		4		_	45		
	85	<u> </u>	4_		{	6_ 6_		
	86	_	4		-+	<u>8</u> _		
	8		3		-+	4		
	8		3			4		
	8		3			6		
		0_	3 3 3			4		
	[9	1_	<u> </u>					

l no l	Grade	Kompetensi
92	3	4
93	3	4

UJI CHI-SQUARE

NPar Tests

Frequencies

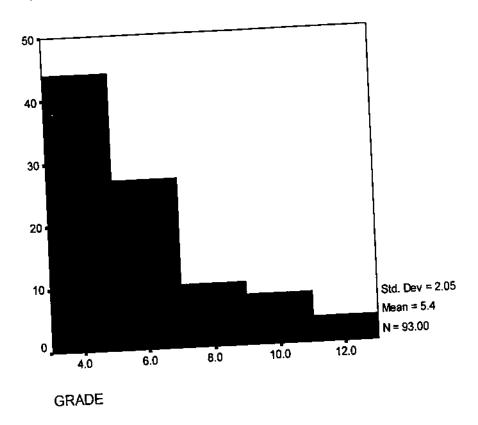
GRADE

	Observed N	Expected N	Residual	
			-5.6	
3	6	11.6	. 1	
1	38	11.6	26.4	
٦ -	1	11.6	5.4	
[5	17	ŀ	-1.6	
6	10	11.6	1 1	
1 _	10	11.6	-1.6	
17	l .	1	-5.6	
19	6	11.6		
_	2	11.6	-9.6	
10	1	11.6	-7.6	
11	4	11.0	1	
Total	93			
1 '512"	`			

COMP

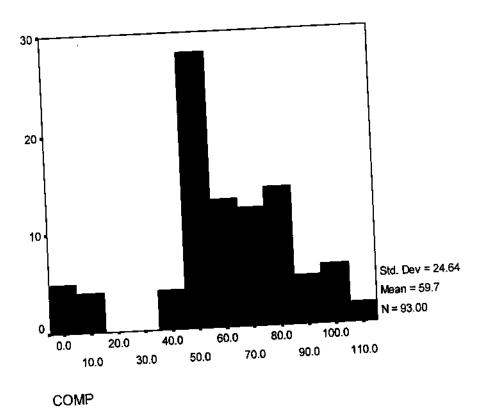
	Observed N	Expected N	Residual	
 	Observed 14	2.0	3.0	
4	3	2.0	1.0	
6	1 1	2.0	-1.0	
8		2.0	-1.0	
41	2	2.0	.0	
42	1	2.0	-1.0	
43	2		.0	
45	4	1	2.0	
46	2		1 . 1	
47	1	1	1 4 - 1	
48			1 1	
49	7	l	1 461	
51	3	´l		
52	1	- 1	امدا	
53		' \	11	
54		<u> </u>		
56	1	' l		
57	l l	^ ا		
58	1	'\	.0 2.0	
59	Ì	" ,	.0 -1.0	
61	1	٠' ١	0. 0.	
62	l l	2		

	1	1	401
63	1	2.0	-1.0 -1.0
64	1	2.0	-1.0
65	2	2.0	.0
66	2	2.0	
67	3	2.0	1.0
68	1	2.0	-1.0
69	1	2.0	-1.0
70	1	2.0	-1.0
73	1	2.0	-1.0
74	1	2.0	-1.0
75	3	2.0	1.0
77	3	2.0	1.0
78	2	2.0	.0
79	2	2.0	.0
82	3	2.0	1.0
84	1	2.0	-1.0
85	2	2.0	.0
91	1	2.0	-1.0
93	1	2.0	-1.0
94	1	2.0	-1.0
95	1	2.0	-1.0
96	3	2.0	1.0
97	1	2.0	-1.0
102	1	2.0	-1.0
113	2	2.0	.0
Total	93		


Test Statistics

	GRADE	COMP
Chi-	81.194	43.022
Square(a,b)	7	45
Asymp. Sig.	.000	.556
[Asymp. 519.	.000	

a 0 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is 11.6. b 46 cells (100.0%) have expected frequencies less than 5. The minimum expected cell frequency is 2.0.


GRAFIK HISTOGRAM DISTRIBUSI GRADE

Graph

GRAFIK HISTOGRAM DISTRIBUSI KOMPETENSI

Graph

UJI KORELASI SPEARMAN'S

Nonparametric Correlations

Correlations

			GRADE	COMP
Spearman's rho	GRADE	Correlation	1.000	.519(**)
Speamanomo		Coefficient Sig. (2-tailed)		.000
1		N N	93	93
	COMP	Correlation	.519(**)	1.000
		Coefficient Sig. (2-tailed)	.000	
1		N	93	93
l		0.01 level (2-tailed).		

^{**} Correlation is significant at the 0.01 level (2-tailed).

Regression

Variables Entered/Removed(b)

Model	Variables Entered	Variables Removed	Method
Model 1	COMP(a)		Enter

a All requested variables entered.
 b Dependent Variable: GRADE

Model Summary(b)

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.563(a)	.317	.310	1.700

a Predictors: (Constant), COMP b Dependent Variable: GRADE

ANOVA(b)

		Sum of	df	Mean Square	F	Sig.
Model		Squares			42.251	.000(a)
1	Regressio	122.541	1	122.541	42.201	
	n Residual	263.932	91	2.900		
1	Total	386.473	92			

a Predictors: (Constant), COMP b Dependent Variable: GRADE

Coefficients(a)

Unstandardized Coefficients			Standardized Coefficients			
Model		Coetti B	Std. Error	Beta	t	Sig. ,000
1	(Constant		.465 .007	.563	5.608 6.500	.000
ł	COMP	,047	.007			

a Dependent Variable: GRADE

Casewise Diagnostics(a)

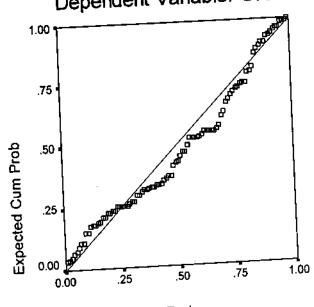
			Predicted	Residual
Case Number 1 2	Std. Residual 2.286 1.818	GRADE 11 11	7.11 7.90	3.89 3.10

	1 4040	11	7.90	3.10
3	1,818 3,304	11	5.37	5.63
4	1.534	10	7.39	2.61
5	1.699	10	7.11	2.89
6	1.579	9	6.31	2.69
7	1.497	9	6.45	2.55
8	2.349	9	5.00	4.00
9	2.349	9	5.00	4.00
10	1.166	9	7.01	1.99
11	1.084	9	7.15	1.85
12	.432	7	6.26	.74
13	.872	7	5.51	1.49
14	1.230	7	4.91	2.09
15	1.312	7	4.76	2.24
16	1.312	7	4.76	2.24
17	.322	7	6.45	.55
18	.460	7	6.22	.78
19	.515	7	6.12	.88
20	.790	7	5.65	1.35
21	.542	7	6.08	.92
22	182	6	6.31	31
23	.175	6	5.70	.30
24	127	6	6.22	22
25	148	6	5.75	.25
26	.643	6	4.91	1.09
27	.588	6	5.00	1.00
28	.808	6	4.62	1.38
29	.065	6	5.89	.11
30	.093	6	5.84	.16
31	017	6	6.03	03
32	935	5 \	6.59	-1.59
33	-,907	5	6.55	-1.55
34	-,357	5	5.61	61
35	-1.237	5	7.11	-2.11
36	715	5 [6.22	-1.22
37	660	5	6.12	-1.12
38	467	5	5.80	-,80
39	,276	5 \	4.53	.47
40	.056	5 \	4.91	.09
41	.056	5	4.91	.09
42	412	5 \	5.70	-,70 l
43	385	5	5.65	65 37
44	220	5	5.37	.09
45	.056	5	4.91	14
46	082	5	5.14	33
47	192	5	5.33	14
48	082	5	5.14	,
49	I			

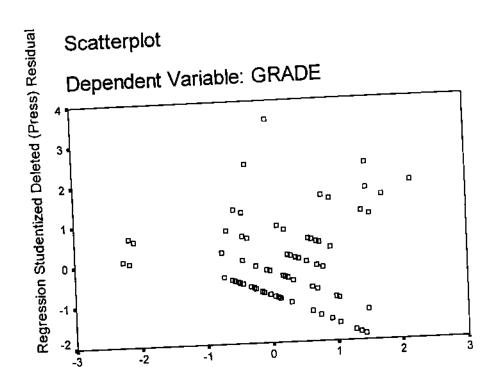
50				,	_ 1
51 -1.687 4 4.58 58 52 -339 4 4.58 58 53 917 4 5.56 -1.56 54 -1.797 4 7.06 -3.06 55 -1.329 4 6.26 -2.26 56 -1.742 4 6.97 -2.97 56 -1.027 4 5.75 -1.75 57 -1.027 4 5.75 -1.75 58 -1.027 4 5.75 -1.75 59 862 4 5.47 -1.47 60 422 4 4.72 -7.2 60 427 4 4.86 86 62 724 4 4.76 76 63 449 4 4.76 76 63 449 4 4.76 76 64 532 4 6.19 2.12 68		-1.439	4	0, 10	-2.45
52 -339 4 4,58 -36 53 -917 4 5,56 -1,56 54 1,797 4 6,26 -2,26 55 -1,329 4 6,26 -2,26 56 -1,742 4 6,97 -2,97 56 -1,742 4 6,97 -2,97 57 -1,027 4 5,75 -1,75 58 -1,027 4 5,75 -1,75 59 -862 4 5,47 -1,47 60 -4,22 4 4,72 -7,2 61 -5,04 4 4,86 -,86 62 -7,24 4 4,76 -,76 63 -,449 4 4,76 -,76 64 -,449 4 4,76 -,76 65 -,477 4 4,81 -,81 66 -,532 4 6,59 -2,59 67	l l	1	4	1	L L
53 -917 4 5,56 -1,306 54 1,797 4 7,06 -3,06 55 -1,329 4 6,26 -2,26 56 -1,742 4 6,97 -2,97 57 -1,027 4 5,75 -1,75 58 -1,027 4 5,75 -1,75 59 -,862 4 4,72 -,72 60 -,422 4 4,72 -,72 61 -,504 4 4,86 -,86 62 -,724 4 5,23 -1,23 63 -,449 4 4,76 -,76 64 -,449 4 4,76 -,76 65 -,477 4 4,81 -,81 66 -,532 4 4,91 -,91 66 -,532 4 6,59 -2,59 67 -1,522 4 6,59 -2,59 71		i i	4		1
54 -1.797 4 7.06 -3.06 55 -1.329 4 6.26 -2.26 56 -1.742 4 6.97 -2.97 57 -1.027 4 5.75 -1.75 58 -1.027 4 5.75 -1.75 59 862 4 4.72 -72 60 422 4 4.72 -72 61 504 4 4.86 86 62 724 4 4.76 76 63 449 4 4.76 76 63 449 4 4.76 76 64 449 4 4.76 76 65 772 4 4.81 81 66 532 4 4.91 91 67 -1.522 4 6.19 -2.59 68 -1.247 4 4.81 -81 70	l 1		4	l l	
55 -1.329 4 6.26 -2.26 56 -1.742 4 6.97 -2.97 57 -1.027 4 5.75 -1.75 58 -1.027 4 5.75 -1.75 59 862 4 5.47 -1.47 60 422 4 4.72 72 61 504 4 4.86 86 62 724 4 4.86 86 62 724 4 4.76 76 63 449 4 4.76 76 64 449 4 4.76 76 64 449 4 4.76 76 64 449 4 4.76 76 64 449 4 4.76 76 68 252 4 6.59 -2.59 67 -1.522 4 6.59 -2.59 71	I	1	4	- 1	L
56 -1.742 4 6.97 -2.97 57 -1.027 4 5.75 -1.75 58 -1.027 4 5.75 -1.75 59 862 4 5.47 -1.47 60 422 4 4.72 72 61 504 4 4.86 86 62 724 4 4.86 86 62 724 4 4.76 76 63 449 4 4.76 76 64 449 4 4.76 76 64 449 4 4.76 76 64 449 4 4.76 76 65 477 4 4.81 81 65 532 4 6.59 -2.59 67 -1.522 4 6.59 -2.59 67 -1.522 4 5.28 -1.28 71	1	l l	4	1	1
57 -1.027 4 5.75 -1.75 58 -1.027 4 5.75 -1.75 59 862 4 5.77 -1.47 60 422 4 4.72 72 61 504 4 4.86 86 61 504 4 4.86 86 62 724 4 5.23 -1.23 63 449 4 4.76 76 64 449 4 4.76 76 65 477 4 4.81 81 65 477 4 4.81 81 66 532 4 6.59 -2.59 67 -1.522 4 6.59 -2.59 68 -1.247 4 4.81 81 70 752 4 5.28 -1.28 71 752 4 5.05 -1.05 73	1		4	l	•
58 -1.027 4 5.75 -1.73 59 862 4 5.47 -1.47 60 422 4 4.72 72 61 504 4 4.86 86 62 724 4 5.23 -1.23 63 449 4 4.76 76 64 449 4 4.76 76 64 449 4 4.76 76 65 477 4 4.81 81 65 532 4 6.59 -2.59 67 -1.522 4 6.59 -2.59 68 -1.247 4 4.81 81 69 477 4 4.81 81 70 752 4 5.28 -1.28 71 752 4 5.28 -1.28 71 752 4 5.05 -1.05 73	1	1	4	i	
59 862 4 3.47 72 60 422 4 4.72 72 61 504 4 4.86 86 62 724 4 5.23 -1.23 63 449 4 4.76 76 64 449 4 4.76 76 64 449 4 4.76 76 65 477 4 4.81 81 65 532 4 4.91 91 66 532 4 6.59 -2.59 67 -1.522 4 6.59 -2.59 68 -1.247 4 6.12 -2.12 68 -1.247 4 6.12 -2.12 68 -1.247 4 6.12 -2.12 71 752 4 5.28 -1.28 71 752 4 5.28 -1.28 73	1	l l	4		l l
60	l l	l l	4	1	
61 62 63 64 64 64 65 65 66 66 67 67 68 67 69 68 67 69 69 69 67 69 69 69 69 69 69 69 69 69 69 69 69 69	1	1	4	l l	
62 724 4 5.23 -1.23 63 449 4 4.76 76 64 449 4 4.76 76 65 477 4 4.81 81 66 532 4 4.91 91 67 -1.522 4 6.59 -2.59 68 -1.247 4 6.12 -2.12 68 -4.77 4 4.81 81 70 -752 4 5.28 -1.28 71 752 4 5.28 -1.28 71 752 4 5.28 -1.28 71 752 4 5.28 -1.28 71 752 4 5.28 -1.28 71 752 4 5.28 -1.28 71 807 4 5.05 -1.05 74 614 4 5.05 -1.05 75	1	i	4		
63 449 4 4.76 76 64 449 4 4.76 76 65 477 4 4.81 81 66 532 4 4.91 91 67 -1.522 4 6.59 -2.59 68 -1.247 4 6.12 -2.12 69 -477 4 4.81 81 70 -752 4 5.28 -1.28 71 -752 4 5.28 -1.28 71 -752 4 5.28 -1.28 71 -752 4 5.28 -1.28 71 -752 4 5.28 -1.28 71 -752 4 5.28 -1.28 71 -807 4 5.05 -1.05 73 -889 4 5.05 -1.05 74 -669 4 5.14 -1.14 75	l l		4		
64 449 4 4.76 76 65 477 4 4.81 81 66 532 4 4.91 91 67 -1.522 4 6.59 -2.59 68 -1.247 4 6.12 -2.12 69 -477 4 4.81 81 70 752 4 5.28 -1.28 71 752 4 5.28 -1.28 71 752 4 5.28 -1.28 71 752 4 5.28 -1.28 71 752 4 5.37 -1.37 72 807 4 5.37 -1.37 73 889 4 5.05 -1.05 74 614 4 5.05 -1.05 75 614 4 5.05 -1.05 76 669 4 5.14 -1.14 77	L I	· ·	4	!	
65 -477 4 4.81 81 66 -532 4 4.91 91 67 -1.522 4 6.59 -2.59 68 -1.247 4 6.12 -2.12 69 -477 4 4.81 81 70 -752 4 5.28 -1.28 71 -752 4 5.28 -1.28 71 -752 4 5.37 -1.37 72 -807 4 5.37 -1.37 73 -889 4 5.51 -1.51 73 -889 4 5.51 -1.51 74 -614 4 5.05 -1.05 75 -614 4 5.05 -1.05 76 -669 4 5.14 -1.14 77 -669 4 5.14 -1.14 79 -669 4 5.14 -1.14 82 -6	1 1	1	4		
66 -532 4 4.91 91 67 -1.522 4 6.59 -2.59 68 -1.247 4 6.12 -2.12 69 477 4 4.81 81 70 752 4 5.28 -1.28 71 752 4 5.28 -1.28 71 752 4 5.28 -1.28 71 752 4 5.28 -1.28 71 752 4 5.28 -1.28 72 807 4 5.37 -1.37 73 889 4 5.51 -1.51 73 889 4 5.05 -1.05 74 614 4 5.05 -1.05 75 614 4 5.05 -1.05 76 669 4 5.14 -1.14 77 669 4 5.14 -1.14 82	1 1	ľ	4	L.	
67 -1.522 4 6.59 -2.59 68 -1.247 4 6.12 -2.12 69 477 4 4.81 81 70 752 4 5.28 -1.28 71 752 4 5.28 -1.28 71 752 4 5.28 -1.28 71 752 4 5.28 -1.28 72 807 4 5.37 -1.37 73 889 4 5.51 -1.51 73 889 4 5.05 -1.05 74 614 4 5.05 -1.05 75 614 4 5.05 -1.05 76 669 4 5.14 -1.14 77 669 4 5.14 -1.14 79 669 4 5.14 -1.14 82 669 4 5.14 -1.14 82 <td>1 1</td> <td>ı</td> <td>4</td> <td>ì</td> <td>1</td>	1 1	ı	4	ì	1
68 -1.247 4 6.12 -2.12 69 477 4 4.81 81 70 752 4 5.28 -1.28 71 752 4 5.28 -1.28 71 807 4 5.37 -1.37 72 889 4 5.51 -1.51 73 889 4 5.05 -1.05 74 614 4 5.05 -1.05 75 614 4 5.05 -1.05 76 669 4 5.14 -1.14 77 669 4 5.14 -1.14 79 669 4 5.14 -1.14 79 669 4 5.09 -1.09 81 642 4 5.09 -1.09 81 669 4 5.14 -1.14 82 669 4 4.58 58 83	1 .	l	4		
69 477 4 4.81 81 70 752 4 5.28 -1.28 71 752 4 5.28 -1.28 72 807 4 5.37 -1.37 73 889 4 5.51 -1.51 73 889 4 5.05 -1.05 74 614 4 5.05 -1.05 75 614 4 5.05 -1.05 76 669 4 5.14 -1.14 77 669 4 5.14 -1.14 79 669 4 5.14 -1.14 79 669 4 5.14 -1.14 80 532 4 4.91 91 81 642 4 5.09 -1.09 81 642 4 5.09 -1.14 82 669 4 4.58 58 83 339 4 4.58 58 84 651 4	l l		4		
70 752 4 5.28 -1.28 71 752 4 5.28 -1.28 72 807 4 5.37 -1.37 73 889 4 5.51 -1.51 73 889 4 5.05 -1.05 74 614 4 5.05 -1.05 75 614 4 5.05 -1.05 76 669 4 5.14 -1.14 77 669 4 5.14 -1.14 78 807 4 5.37 -1.37 78 669 4 5.14 -1.14 79 669 4 5.14 -1.14 80 532 4 4.91 91 81 662 4 5.14 -1.14 82 669 4 4.58 58 83 339 4 4.58 58 84	l L	1	4	I	
71 752 4 5.28 -1.28 72 807 4 5.37 -1.37 73 889 4 5.51 -1.51 74 614 4 5.05 -1.05 75 614 4 5.05 -1.05 75 669 4 5.14 -1.14 76 669 4 5.14 -1.14 77 669 4 5.37 -1.37 78 807 4 5.37 -1.37 78 807 4 5.37 -1.37 78 669 4 5.14 -1.14 79 669 4 5.14 -1.14 82 642 4 5.09 -1.09 81 669 4 4.58 58 83 339 4 4.58 58 84 422 4 4.72 72 85 .651 4 2.89 1.11 86 .596 4			4	l l	
72 -807 4 5.51 -1.51 73 -889 4 5.51 -1.51 74 -614 4 5.05 -1.05 75 -614 4 5.05 -1.05 76 -669 4 5.14 -1.14 77 -669 4 5.37 -1.37 78 -807 4 5.37 -1.37 79 -669 4 5.14 -1.14 79 -669 4 5.14 -1.14 80 -532 4 4.91 91 81 -642 4 5.09 -1.09 81 -642 4 5.09 -1.09 83 -339 4 4.58 58 83 -339 4 4.58 58 84 422 4 4.72 72 85 .651 4 2.89 1.11 86 .651 4 2.98 1.02 87 .19 3 2.80	t e	1	4	1	
73 889 4 5.05 -1.05 74 614 4 5.05 -1.05 75 614 4 5.05 -1.05 76 669 4 5.14 -1.14 77 669 4 5.37 -1.37 78 807 4 5.37 -1.37 78 669 4 5.14 -1.14 79 669 4 5.14 -1.14 80 532 4 4.91 91 81 642 4 5.09 -1.09 81 642 4 5.09 -1.09 83 339 4 4.58 58 83 339 4 4.58 58 84 422 4 4.72 72 84 596 4 2.89 1.11 86 .651 4 2.98 1.02 87 .19 3 2.80 .20 89 .119 3 <td< td=""><td>1</td><td></td><td>4</td><td>l</td><td>1</td></td<>	1		4	l	1
74 614 4 5.05 -1.05 75 669 4 5.05 -1.05 76 669 4 5.14 -1.14 77 669 4 5.37 -1.37 78 807 4 5.37 -1.37 79 669 4 5.14 -1.14 79 532 4 4.91 91 80 532 4 4.91 91 81 642 4 5.09 -1.09 81 669 4 5.14 -1.14 82 669 4 5.14 -1.14 83 339 4 4.58 58 83 422 4 4.72 72 84 651 4 2.89 1.11 85 .651 4 2.89 1.11 86 .651 4 2.98 2.00 87 119 3 2.80 .20 89 .064 3 2	1	889	4	h	1
75 614 4 5.05 -1.05 76 669 4 5.14 -1.14 77 669 4 5.14 -1.14 78 807 4 5.37 -1.37 78 669 4 5.14 -1.14 79 669 4 5.14 -1.14 80 532 4 4.91 91 81 642 4 5.09 -1.09 81 642 4 5.09 -1.09 82 669 4 5.14 -1.14 82 339 4 4.58 58 83 422 4 4.72 72 84 422 4 2.89 1.11 85 .651 4 2.89 1.11 86 .596 4 2.98 2.00 87 119 3 2.80 .20 89 .119 3 2.80 .20 90 .119 3 2.8	l l	614	4		L
76 669 4 5.14 -1.14 77 669 4 5.37 -1.37 78 807 4 5.37 -1.37 79 669 4 5.14 -1.14 79 669 4 5.14 -1.14 80 532 4 4.91 91 81 642 4 5.09 -1.09 81 642 4 5.14 -1.14 82 669 4 4.58 58 83 339 4 4.58 58 83 422 4 4.72 72 84 .651 4 2.89 1.11 85 .651 4 2.89 1.02 87 .119 3 2.80 .20 88 .119 3 2.80 .20 89 .119 3 2.80 .20 91 .119 3 2.80 .20 92 .119 3 2.80 <td>1 1</td> <td>ļ.</td> <td>4</td> <td></td> <td></td>	1 1	ļ.	4		
77 669 4 5.14 -1.37 78 807 4 5.37 -1.37 79 669 4 5.14 -1.14 80 532 4 4.91 91 81 642 4 5.09 -1.09 81 669 4 5.14 -1.14 82 339 4 4.58 58 83 339 4 4.58 58 84 422 4 4.72 72 84 .651 4 2.89 1.11 86 .651 4 2.89 1.11 87 .19 3 2.80 .20 88 .119 3 2.80 .20 89 .119 3 2.80 .20 91 .119 3 2.80 .20 92 .119 3 2.80 .20 93 .119 3 2.80 .20	l l	669	4	1	
78 807 4 5.37 -1.37 79 669 4 5.14 -1.14 80 532 4 4.91 91 81 642 4 5.09 -1.09 81 669 4 5.14 -1.14 82 669 4 5.14 -1.14 83 339 4 4.58 58 84 422 4 4.72 72 84 651 4 2.89 1.11 86 .651 4 2.89 1.11 86 .596 4 2.98 1.02 87 119 3 2.80 .20 88 .119 3 2.80 .20 90 .064 3 2.80 .20 91 .119 3 2.80 .20 92 .119 3 2.80 .20 92 .119 3 2.80 .20	1 1	1	4	i	
79 669 4 5.14 -1.14 80 532 4 4.91 91 81 642 4 5.09 -1.09 81 669 4 5.14 -1.14 82 669 4 4.58 58 83 339 4 4.58 58 84 422 4 4.72 72 84 651 4 2.89 1.11 86 .651 4 2.89 1.11 86 .596 4 2.98 1.02 87 119 3 2.80 .20 89 .119 3 2.80 .20 90 .064 3 2.80 .20 91 .119 3 2.80 .20 92 .119 3 2.80 .20 93 .119 3 2.80 .20	1 1		4		
10	l l		4		
81 642 4 5.09 -1.09 82 669 4 5.14 -1.14 83 339 4 4.58 58 84 422 4 4.72 72 85 .651 4 2.89 1.11 86 .651 4 2.89 1.11 87 .596 4 2.98 1.02 87 .119 3 2.80 .20 89 .119 3 2.80 .20 89 .064 3 2.89 .11 90 .064 3 2.80 .20 91 .119 3 2.80 .20 92 .119 3 2.80 .20 93 .119 3 2.80 .20	· • •	_	4	1	1
82 669 4 5.14 -1.14 83 339 4 4.58 58 84 422 4 4.72 72 84 .651 4 2.89 1.11 85 .651 4 2.89 1.11 86 .596 4 2.98 1.02 87 .19 3 2.80 .20 88 .119 3 2.80 .20 89 .119 3 2.80 .20 91 .119 3 2.80 .20 91 .119 3 2.80 .20 92 .119 3 2.80 .20 93 .119 3 2.80 .20	1	l l	4	I .	
83 339 4 4.58 38 84 422 4 4.72 72 85 .651 4 2.89 1.11 86 .651 4 2.89 1.11 87 .596 4 2.98 1.02 88 .119 3 2.80 .20 89 .119 3 2.80 .20 90 .064 3 2.89 .11 90 .119 3 2.80 .20 91 .119 3 2.80 .20 92 .119 3 2.80 .20 93 .119 3 2.80 .20	1 1	ı	4		1
84 422 4 4.72 72 85 .651 4 2.89 1.11 86 .651 4 2.89 1.11 87 .596 4 2.98 1.02 88 .119 3 2.80 .20 89 .119 3 2.80 .20 90 .064 3 2.80 .20 91 .119 3 2.80 .20 92 .119 3 2.80 .20 93 .119 3 2.80 .20	1		4	1	
85 .651 4 2.89 1.11 86 .651 4 2.89 1.02 87 .596 4 2.98 1.02 88 .119 3 2.80 .20 89 .119 3 2.80 .20 90 .064 3 2.89 .11 90 .119 3 2.80 .20 91 .119 3 2.80 .20 92 .119 3 2.80 .20 93 .119 3 2.80 .20		1	4	l .	
86 .651 4 2.89 1.11 87 .596 4 2.98 1.02 88 .119 3 2.80 .20 89 .119 3 2.80 .20 90 .064 3 2.89 .11 90 .119 3 2.80 .20 91 .119 3 2.80 .20 92 .119 3 2.80 .20 93 .119 3 2.80 .20	L '		4	l l	
87 .596 4 2.98 1.02 88 .119 3 2.80 .20 89 .119 3 2.80 .20 90 .064 3 2.89 .11 90 .119 3 2.80 .20 91 .119 3 2.80 .20 92 .119 3 2.80 .20 93 .119 3 2.80 .20	•		4	1	1
88 .119 3 2.80 .20 89 .119 3 2.80 .20 90 .064 3 2.89 .11 91 .119 3 2.80 .20 92 .119 3 2.80 .20 93 .119 3 2.80 .20		1	4		
89			l l		I
90 .064 3 2.89 91 .119 3 2.80 .20 92 .119 3 2.80 .20 93 .119 3 2.80 .20	1		•	l.	
90 91 92 93 119 3 2.80 2.80 2.20 3 2.80 2.20 2.20	L	L L	l l	1	
91 92 93 ,119 3 2.80 .20	1		1	l.	
92 3 2.80		L L			
1 4.1		1	3	2.80	
- CARADUPUL VALVEYT	- Dependent Va				

a Dependent Variable: GRADE

Residuals Statistics(a)

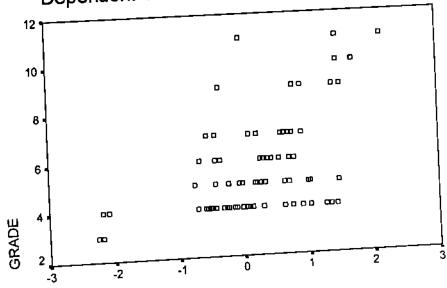

	 -	Adaption (F)	Mean	Std. Deviation	N
	Minimum	Maximum	5.41	1,154	93
Predicted Value	2.80	7.90	·	1.000	93
Std. Predicted Value	-2.263	2.162	.000		93
Standard Error of	.177	.439	.236	.081	20
Predicted Value		7.70	5.40	1.151	93
Adjusted Predicted Value	2.78	5.63	.00.	1.694	93
Residual	-3.06		.000	.995	93
Std. Residual	-1.797	3.304		4.000	93
= :	-1.827	3.322	.002	,	93
Stud. Residual	-3.16	5.69	.01	1.734	
Deleted Residual		0.504	.007	1.022	93
Stud. Deleted Residual	-1.852	1 -	.989	4 557	93
Mahal, Distance	.001	5.119	1	000	93
Cook's Distance	.000	.116	.012	•	93
	.000	0.50	.011	.017	93
Centered Leverage Value					

a Dependent Variable: GRADE


Charts

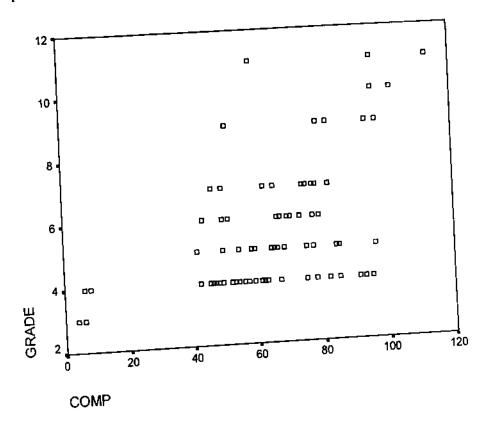
Normal P-P Plot of Regression Standa

Dependent Variable: GRADE


Observed Cum Prob

Regression Standardized Predicted Value

Scatterplot



Regression Standardized Predicted Value

SCATTER GRADE KOMPETENSI

Graph

