TUGAS AKHIR

ANALISIS PENGGUNAAN METODE BIM PADA PERENCANAAN

PEMBESIAN UNTUK PENINGKATAN EFISIENSI

NIM. 41121110050

Dosen Pembimbing:

Dr. Ir. Agus Suroso, M.T.

PROGRAM STUDI TEKNIK SIPIL

FAKULTAS TEKNIK

UNIVERSITAS MERCUBUANA

2022

https://lib.mercubuana.ac.id

LEMBAR PENGESAHAN SIDANG PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MERCU BUANA

Tugas akhir ini untuk melengkapi tugas-tugas dan memenuhi persyaratan dalam memperoleh gelar Sarjana Teknik, jenjang pendidikan Strata 1 (S-1), Program Studi Teknik Sipil, Fakultas Teknik, Universitas Mercu Buana, Jakarta.

Judul Tugas Akhir: Analisis Penggunaan Metode BIM Pada Perencanaan
Pembesian Untuk Peningkatan Efisiensi

Disusun oleh :

Nama	:	Savitri Permata Bunda Pratiwi
NIM	:	41121110050
Program Studi	:	Teknik Sipil

Telah diujikan dan dinyatakan LULUS sidang sarjana pada tanggal 10 Juni 2023

Mengetahui, Pembimbing Tugas Akhir Ketua Penguji

Dr. Ir. Agus Suroso, M.T.

Ali Sunandar, S.ST., M.T.

Ketua Program Studi Teknik Sipil

Sylvia Indriany, S.T., M.T.

LEMBAR PERNYATAAN SIDANG SARJANA FAKULTAS TEKNIK UNIVERSITAS MERCU BUANA

Yang bertanda tangan di bawah ini :

Nama	: Savitri Permata Bunda Pratiwi
NIM	: 41121110050
Program Studi	: Teknik Sipil

MERCU BL

Menyatakan bahwa Tugas Akhir ini merupakan kerja asli, bukan jiplakan (duplikat) dari karya orang lain. Apabila ternyata pernyataan saya ini tidak benar maka saya bersedia menerima sanksi berupa pembatalan gelar kesarjanaan saya.

Demikian pernyataan ini saya buat dengan sesungguhnya untuk dapat dipertanggungjawabkan sepenuhnya.

Jakarta, 26 Juni 2023

SITA Yang memberikan pernyataan

Savitri Permata Bunda Pratiwi

KATA PENGANTAR

Puji syukur penulis ucapkan kepada Allah SWT, karena berkat Rahmat-Nya penulis dapat menyelesaikan Tugas Akhir yang berjudul Analisis Penggunaan Metode BIM Pada Perencanaan Pembesian Untuk Peningkatan Efisiensi. Tugas akhir ini dibuat untuk memenuhi syarat dalam menyelesaikan dan mendapatkan gelar Sarjana Teknik (S.T.) pada program studi S1 Teknim Sipil Fakultas Teknik Universitas Mercu Buana.

Dalam menyelesaikan Tugas Akhir ini penulis mendapatkan bimbingan, pengarahan dan bantuan dari semua pihak. Untuk itu penulis mengucapkan terima kasih kepada:

- Ibu Sylvia Indriyani, ST, MT., selaku Ketua Program Studi Teknik Sipil Universitas Mercu Buana.
- 2. Dr. Ir. Agus Suroso, M.T., selaku Dosen pembimbing Tugas Akhir.
- PT. Hutama Karya (Persero) yang telah memberikan kesempatan dan dukungan dalam penelitian tugas akhir.
- Keluarga dan orang terdekat saya yang senantiasa selalu memberikan dukungan dan doa restunya. U N I V E R S I T A S
- 5. Teman-teman mahasiswa/i teknik sipil kelas karyawan Universitas Mercu Buana.
- 6. Serta semua pihak yang telah membantu saya dalam penyelesaian tugas akhir ini.

Akhir kata, semoga penulisan tugas akhir ini memberikan manfaat kepada pembaca. Penulis menyadari bahwa penyusunan dan penulisan laporan ini masih jauh dari kata sempurna. Maka dari itu, kritik dan saran yang mmbangun sangat diharpakan dari pembaca. Semoga laporan ini bermanfaat bagi kita semua.

Cilegon, 13 Juni 2023

Savitri Permata Bunda Pratiwi

DAFTAR ISI

HALAMAN JUDUL	i
LEMBAR PENGESAHAN	ii
LEMBAR PERNYATAAN	iii
ABSTRAK	iv
ABSTRACT	V
KATA PENGANTAR	vi
DAFTAR ISI	vii
DAFTAR TABEL	ix
DAFTAR GAMBAR	X
BAB I PENDAHULUAN	I-1
1.1 Latar Belakang Masalah	I-1
1.2 Identifikasi Masalah	I-4
1.3 Rumusan Masalah	I-4
1.4 Tujuan Penilitian	I-4
1.5 Manfaat Penelitian	I-5
1.6 Batasan Masalah	I-5
1.7 Sistematika Penulisan	I-6
BAB II TINJAUAN PUSTAKA	II-1
2.1 Manajemen Konstruksi	II-1
2.2 Building Information Modelling (BIM)	II-1
2.3 Manfaat BIM	II-3
2.4 Kekurangan Metode BIM	II-4
2.5 Pekerjaan Pembesian	II-4
2.6 Intrument Penelitian	II-5
2.7 Kerangka Berpikir	II-6
2.8 Jurnal Terdahulu	II-8
2.9 Research Gap	II-20
BAB III METODOLOGI PENELITIAN	III-1
vii	

3.1 Metode Penelitian III-1
3.2 Diagram Alir III-4
3.2 LokasiIII-7
BAB IV ANALISIS DAN PEMBAHASANIV-1
4.1 Spesifikasi BetonIV-1
4.2 Spesifikasi Baja TulanganIV-2
4.3 Spesifikasi Penulangan Secara UmumIV-2
4.4 Detail StrukturIV-5
4.5 Pemodelan Menggunakan <i>TeklaStructure</i> 2021IV-7
4.7 Pemodelan Struktur Pedestal dan KolomIV-13
4.9 Pemodelan Struktur Balok/ GirderIV-21
4.10 Clash CheckIV-33
4.11 Perhitungan Bar Bending Schedule (BBS) menggunakan TeklaPad V3.0.6 IV-35
4.12 Perhitungan Waste Menggunakan Aplikasi Cutting Optimazion Pro (COP) IV-45
4.14 Analisis Perbandingan Berat Besi antara Metode Konvensional dan Metode BIM
4.15 Analisis Perbandingan Biaya Besi dengan Metode Konvensional dan Metode BIM
4.17 Analisis Kelebihan dan Kekurangan Penggunaan BIM dalam Perhitungan BBS
4.18 Analisi Data KuesionerIV-64
BAB V KESIMPULAN DAN SARANV-1
5.1 KesimpulanV-1
5.2 Saran
DAFTAR PUSTAKAPustaka-1
LAMPIRANLampiran-1

DAFTAR TABEL

Tabel 2-1 Latar Belakang Responden			II-6
Tabel 4-1 Spesifikasi Baja Tulangan			IV-2
Tabel 4-2 Standar Kait untuk Tulangan Utama			IV-3
Tabel 4-3 Tabel standar kait untuk tulangan ge	eser (135°)		IV-4
Tabel 4-4 Tabel Standar Panjang Penyaluran			IV-4
Tabel 4-5 Detail Tipe dan Penulangan Kolom			IV-5
Tabel 4-6 Data Struktur Beton Kolom C1			IV-14
Tabel 4-7 Hasil rekap perhitungan girder 2G1a	1 TeklaPad V3.0.6	dalam excel	IV-44
Tabel 4-8 Hasil analisis data tulangan menggu	nakan COP		IV-53
Tabel 4-9 Hasil presentase waste dan stock mer	nggunakan Cutting	Optimazion Pro	o (COP).
			IV-53
Tabel 4-10 Tabel Hasil Perbandingan Pe	rhitungan BBS	Menggunakan	Metode
Konvensional dan Metode BIM Kolom GF an	d 1st Floor		IV-54
Tabel 4-11 Tabel Hasil Perbandingan Pe	rhitungan BBS	Menggunakan	Metode
Konvensional dan Metode BIM Kolom 2nd Flo	or and 3 rd Floor		IV-55
Tabel 4-12 Tabel Hasil Perbandingan Pe	rhitungan BBS	Menggunakan	Metode
Konvensional dan Metode BIM Beam and Gir	der		IV-57
Tabel 4-13 Tabel Hasil Perbandingan Pe	rhitungan BBS	Menggunakan	Metode
Konvensional dan Metode BIM Slab	JANA		IV-59
Tabel 4-14 Hasil Perbandingan Kebutu	han Tulangan M	Menggunakan	Metode
Konvensional dan Metode BIM			IV-62
Tabel 4-15 Hasil Perbandingan Biaya Perhitun	gan BBS antara Me	etode Konvensi	onal dan
Metode BIM			IV-62
Tabel 4-16 Hasil Kuesioner Responden 1			IV-64
Tabel 4-17 Hasil Kuesioner Responden 2			IV-67
Tabel 4-18 Hasil Kuesioner Responden 3			IV-69

DAFTAR GAMBAR

Gambar 2-1 Logo Tekla Structure	II-2
Gambar 2-2 Kerangka Berpikir	II-7
Gambar 3-3-1 Citra Satelit PLTU Jawa 9&10 (2×1000MW), Suralaya	III-7
Gambar 3-3-2 Dokumentasi PLTU Jawa 9&10 (2×1000MW), Suralaya	III-7
Gambar 4-1 Standar kait untuk Tulangan Utama	IV-2
Gambar 4-2 Standar kait untuk tulangan geser (135°)	IV-3
Gambar 4-3 Standar panjang penyaluran	IV-4
Gambar 4-4 Detail Kolom (Berurutan C1-C2-C3-C4)	IV-5
Gambar 4-5 Panjang Lapangan dan Tumpuan pada Balok dan Kolom	IV-5
Gambar 4-6 Standar Penulangan Kolom	IV-6
Gambar 4-7 Standard Penulangan Balok	IV-7
Gambar 4-8 Tampilan awal TeklaStructures 2021	IV-8
Gambar 4-9 Tampilan New File TeklaStructures 2021	IV-8
Gambar 4-10 Tampilan Pengaturan Grid	IV-9
Gambar 4-11 Tampilan hasil pemodelan grid	IV-10
Gambar 4-12 Tampilan pengaturan view	IV-10
Gambar 4-13 Tampilan pengaturan grid lines	IV-11
Gambar 4-14 Tampilan penambahan dan pengurangan view yang akan di	tampilkan
MERCU BUANA	IV-11
Gambar 4-15 Tampilan view yang ditambahkan	IV-12
Gambar 4-16 Tampilan Pemilihan View	IV-12
Gambar 4-17 Tampilan Hasil View	IV-13
Gambar 4-18 Tampilan Pengaturan Rebar Concrete Column	IV-14
Gambar 4-19 Tampilan Pengaturan Properties Kolom	IV-15
Gambar 4-20 Tampilan Hasil Pemodelan Beton Kolom	IV-15
Gambar 4-21 Tampilan Tool Bar Application and Components	IV-16
Gambar 4-22 Tampilan Hasil Rectangular Column Reinforcement	IV-16
Gambar 4-23 Tampilan pengaturan properties rectingular column reinforcer	nentIV-17
Gambar 4-24 Tampilan Properties Rectangular Column Reinforcement-	Main Bars
	IV-18

Gambar 4-25 Tampilan Properties Rectangular Column Reinforcement- Bar Ends. IV-18

Х

Gambar 4-26 Tampilan Properties Rectangular Column Reinforcement- Side Bars IV-19
Gambar 4-27 Tampilan Properties Rectangular Column Reinforcement- StirrupsIV-19
Gambar 4-28 Tampilan Properties Rectangular Column Reinforcement- Intermediate
LinksIV-20
Gambar 4-29 Tampilan Pengaturan Properties Rectangular Column Reinforcement
Gambar 4-30 Tampilan hasil pemodelan kolom/pedestal dengan rectangular column
reinforcementIV-2
Gambar 4-31 Tampilan Concrete Beam PropertiesIV-2
Gambar 4-32 Tampilan Penentuan Start Point dan End Point Concrete BeamIV-22
Gambar 4-33 Tampilan Hasil Pemodelan Concrete BeamIV-22
Gambar 4-34 Tampilan penentuan komponen yang akan diberi rebar sengkangIV-23
Gambar 4-35 Tampilan pengaturan rebar set properties sengkang dan hasil pemodelannya
Gambar 4-36 Tampilan penambahan spacing zone SengkangIV-24
Gambar 4-37 Tampilan Rebar Set Properties SengkangIV-25
Gambar 4-38 Tampilan hasil pemodelan pengaturan SengkangIV-25
Gambar 4-39 Tampilan rebar end detail modifier untuk memberikan hook pada Sengkang
Gambar 4-40 Tampilan hasil pemberian hook pada SengkangIV-26
Gambar 4-41 Tampilan pembuatan pola tulangan longitudinal beam/ girderIV-27
Gambar 4-42 Tampilan Pengaturan Rebar Set PropertiesIV-28
Gambar 4-43 Tampilan Hasil Pemodelan Tulangan Longitudinal Beam/ GirderIV-28
Gambar 4-44 Tampilan leg face untuk memanjangkan tulanganIV-29
Gambar 4-45 Tampilan hasil pemanjangan tulanganIV-29
Gambar 4-46 Tampilan pengaturan rebar end detail modifierIV-30
Gambar 4-47 Tampilan hasil pemodelan pembuatan hook pada tulangan longitudina
Gambar 4-48 Tampilan pengaturan properties rebar splitter propertiesIV-3
Gambar 4-49 Tampilan hasil pemodelan rebar splitterIV-3
Gambar 4-50 Tampilan pengaturan panjang tulangan dan letak splicingIV-32
Gambar 4-51 Tampilan hasil akhir pemodelan beam/ girderIV-32
Gambar 4-52 Tampilan clash check managerIV-33

Gambar 4-53 Tampilan layar apabila terdapat clash pada komponen	IV-33
Gambar 4-54 Tampilan Clash pada Point 6	IV-34
Gambar 4-55 Tampilan layar apabila tidak terdapat clash pada komponen	IV-34
Gambar 4-56 Tampilan number modified objects	IV-35
Gambar 4-57 Tampilan layar dan toolbar sebelum melakukan analisis m	enggunakan
TeklaPad V3.0.6	IV-36
Gambar 4-58 Tampilan pemilhan section yang akan dianalisis	IV-36
Gambar 4-59 Tampilan pemilhan section yang akan dianalisis	IV-37
Gambar 4-60 Tampilan TeklaPad V3.0.6	IV-38
Gambar 4-61 Tampilan BBS concrete part pada TeklaPad v3.0.6	IV-38
Gambar 4-62 Tampilan loading data pada TeklaPad V3.0.6	IV-39
Gambar 4-63 Tampilan hasil analisis BBS menggunakan TeklaPad V3.0.6	IV-39
Gambar 4-64 Tampilan tool bar "export data" TeklaPad V3.0.6	IV-40
Gambar 4-65 Tampilan export options pada TeklaPad V3.0.6	IV-40
Gambar 4-66 Tampilan pemilihan lokasi data untuk hasil TeklaPad V3.0.6	IV-41
Gambar 4-67 Tampilan apabila hasil TeklaPad V3.0.6 telah tersimpan	IV-42
Gambar 4-68 Tampilan hasil TeklaPad V3.0.6 dalam bentuk excel	IV-42
Gambar 4-69 Tampilan hasil TeklaPadV3.0.6 girder 2G1a	IV-43
Gambar 4-70 Tampilan awal Cutting Optimazion Pro (COP)	IV-45
Gambar 4-71 Tampilan toolbar technical settings-linear	IV-46
Gambar 4-72 Tampilan properties technical settings-linear	IV-46
Gambar 4-73 Tampilan COP setelah ditambahkan baris	IV-47
Gambar 4-74 Tampilan copy data pada excel	IV-48
Gambar 4-75 Tampilan hasil input data dari excel ke COP	IV-48
Gambar 4-76 Tampilan data stock pada COP	IV-49
Gambar 4-77 Tampilan tahapan running data COP	IV-49
Gambar 4-78 Tampilan hasil data waste dan stock dari COP	IV-50
Gambar 4-79 Tampilan cara penyimpanan kebutuhan material/ pieces	IV-50
Gambar 4-80 Tampilan pemilihan lokasi dan nama file hasil analisis	IV-51
Gambar 4-81 Tampilan cara penyimpanan data stock material pada COP	IV-51
Gambar 4-82 Tampilan cara export data stock ke excel	IV-52
Gambar 4-83 Tampilan pemilihan lokasi penyimpanan dan nama file	IV-52
Gambar 4-84 Hasil Perhitungan Sengkang Balok RB1 dengan Metode BIM	IV-58

Gambar 4-85 Hasil Perhitungan Sengkang Balok RB1 dengan Metode Konvensional
Gambar 4-86 Hasil Perhitungan Tulangan Menggunakan TeklaStructure2021IV-60
Gambar 4-87 Hasil Perhitungan Tulangan Menggunakan Metode Konvensional IV-61

