IDENTIFIKASI PEREDAM MOTOR TORAK PADA KENDARAAN RODA EMPAT KAPASITAS 1200 CC DAN KAPASITAS 1300 CC BERBASIS GETARAN DENGAN METODE HILBERT TRANSFORM (HT)

FATIMAH AZZAHRO DEVRIES NIM: 41318010044

PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MERCU BUANA JAKARTA 2023

LAPORAN TUGAS AKHIR

IDENTIFIKASI PEREDAM MOTOR TORAK PADA KENDARAAN RODA EMPAT KAPASITAS 1200 CC DAN KAPASITAS 1300 CC BERBASIS GETARAN DENGAN METODE HILBERT TRANSFORM (HT)

Disusun oleh:

Nama : Fatimah Azzahro Devries

NIM : 41318010044 Program Studi : Teknik Mesin

DIAJUKAN UNTUK MEMENUHI SYARAT KELULUSAN MATA KULIAH TUGAS AKHIR PADA PROGRAM SARJANA STRATA SATU (S1) Februari 2023

HALAMAN PENGESAHAN

IDENTIFIKASI PEREDAM MOTOR TORAK PADA KENDARAAN RODA EMPAT KAPASITAS 1200 CC DAN KAPASITAS 1300 CC BERBASIS GETARAN DENGAN METODE HILBERT TRANSFORM (HT)

Disusun oleh:

Nama :FatimahAzzahroDevries

NIM : 41318010044 Program Studi : Teknik Mesin

Telah diperiksa dan disetujui pada tanggal 06 Februari 2023

Telah dipertahankan di depan penguji,

Pembimbing TA

Penguji Sidang I

(Subekti, ST., MT)

(Andi Firdaus Sudarma, M.Sc)

NIK/NIP. 118730612

NIK/NIP. 217810112

Penguji Sidang II Penguji Sidang III

(Dr. Abdul Hamid)

NIK/NIP: 616460096

(Prof. Dr. Chandrasa Soekardi)

NIK/NIP: 114570409

Mengetahui,

Kaprodi Teknik Mesin

Koordinator TA

(Muhammad Fitri, ST., M.Si., P.hD)

NIK/NIP. 118690617

(Gilang Awan Yudhistira, ST., M.T)

NIK/NIP. 221900211

HALAMAN PERNYATAAN

Yang bertanda tangan di bawah ini,

Nama

: Fatimah Azzahro Devries

NIM

41318010044

Jurusan

: Teknik Mesin

Fakultas

: Teknik

Judul Tugas Akhir : IDENTIFIKASI PEREDAM MOTOR TORAK PADA

KENDARAAN RODA EMPAT KAPASITAS 1200 CC DAN KAPASITAS 1300 CC BERBASIS GETARAN

DENGAN METODE HILBERT TRANSFORM (HT)

Dengan ini menyatakan bahwa saya melakukan Tugas Akhir dengan sesungguhnya dan hasil penulisan Laporan Tugas Akhir yang telah saya buat ini merupakan hasil karya sendiri dan benar keasliannya. Apabila ternyata di kemudian hari penulisan Laporan Tugas Akhir ini merupakan hasil plagiat atau penjiplakan terhadap karya orang lain, maka saya bersedia mempertanggung jawabkan sekaligus bersedia menerima sanksi berdasarkan aturan di Universitas Mercu Buana.

Demikian pernyataan ini saya buat dalam keadaan sadar dan tanpa paksaan.

Jakarta, 06 Februari 2023

(Fatimah Azzahro Devries)

PENGHARGAAN

Alhamdulillah, puji syukur kita panjatkan kehadirat Allah SubhannahuWata'ala, karena telah diberikan rahmat dan anugerah sehingga penulis dapat menyelesaikan laporan tugas akhir yang berjudul Identifikasi Peredam Motor Torak Pada Kendaraan Toyota Calya dan Daihatsu Xenia. Penyusunan laporan Tugas Akhir merupakan sebagai salah satu syarat untuk menyelesaikan seluruh rangkaian kegiatan Tugas Akhir dan sebagai salah satu syarat untuk menempuh ujian jenjang Sarjana Strata Satu (S1) di Jurusan Teknik Mesin Fakultas Teknik Universitas Mercu Buana

Dalam proses melaksanakan kegiatan dan penyusunan laporan Tugas Akhir, penulis menyadari begitu banyak bantuan dan dukungan dari berbagai pihak baik secara moral maupun langsung. Dengan adanya bimbingan dan bantuan dari pembimbing maupun rekan-rekan, penulis dapat melaksanakan tugas akhir dan menyelesaikan penyusunan laporan tugas akhir.

Oleh karena itu dalam kesempatan ini penulis ingin menyampaikan ucapan terimakasih sebesar – besarnya kepada:

- 1. Bapak Prof. Dr. Andi Adriansyah, M.Eng Selaku Rektor Universitas Mercu Buana.
- 2. Bapak Dr. Mawardi Amin, M.T. Selaku Dekan Fakultas Teknik Universitas Mercu Buana.
- 3. Bapak Muhamad Fitri, ST., M.Si., P.hD selaku Kepala Program Studi Teknik Mesin Fakultas Teknik Universitas MercuBuana
- 4. Alief Avicenna Luthfie, ST., M.Eng, selaku Sekretaris Program Studi Teknik Mesin Fakultas Teknik Universitas Mercu Buana.
- 5. Bapak Gilang Awan Yudhistira, ST., M.T selaku Koordinator Tugas Akhir Teknik Mesin Universitas MercuBuana
- 6. Bapak Subekti, ST., MT selaku dosen pembimbing Tugas Akhir Teknik Mesin Universitas MercuBuana
- 7. Orang tua yang selalu memberikan doa dan dukungan di segala aspek terhadap penulis sehingga dapat menyelesaikan laporan Tugas Akhir ini
- 8. Teman-teman satu tim dalam laporan Tugas Akhir ini yaitu Muhammad Hadi Saputra, Danang Prasetyo dan Firizki Fahdilah
- 9. Teman-teman Teknik mesin angkatan 2018 Universitas Mercu Buana yang

selalu memberikan pengalaman dan masukan dalam penyusunan laporan Tugas Akhir

Penulis sangat menyadari masih terdapat banyak kekurangan dalam laporan ini hal tersebut tidak lain karena keterbatasan pengetahuan yang dimiliki penulis. Oleh karena itu, penulis dengan sangat terbuka menerima segala kritik dan saran yang bersifat membangun. Akhir kata, penulis berharap agar laporan Tugas Akhir ini dapat bermanfaat bagi pembaca.

Jakarta, 06 Februari 2023

(Fatimah Azzakro-Devries)

DAFTAR ISI

HALA	MAN PENGESAHAN	i			
HALA	MAN PERNYATAAN	ii			
PENGHARGAAN ABSTRAK ABSTRACT DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL		iii v vi vii ix			
			xi		
			BAB I	PENDAHULUAN	1
			1.1.	LATAR BELAKANG	1
			1.2.	RUMUSAN MASALAH	2
		1.3.	TUJUAN	3	
1.4.	MANFAAT	3			
1.5.	RUANG LINGKUP DAN BATASAN MASALAH	3			
1.6.	SISTEMATIKA PENULISAN	4			
	UNIVERSITAS				
BAB II 2.1.	TINJAUAN PUSTAKA BUANA PENELITIAN TERDAHULU	5 5			
2.2.	GETARAN (VIBRATION)	7			
	2.2.1. Tipe Data Getaran (Vibrasi)	8			
2.3.	PEREDAM MESIN (MOUNTING ENGINE)	10			
	2.3.1. Damping Deskriptors	11			
	2.3.2. Cara Kerja Engine Mounting	12			
2.4.	PENGERTIAN TORSI	13			
	2.4.1. Sumbu Torsi	13			
	2.4.2. Pusat Elastis	14			
2.5.	PENGERTIAN INJEKTOR	15			
2.6	HII RERT TRANSFORM (HT)	16			

BAB III	METODOLOGI	18
3.1.	DIAGRAM ALIR	18
3.2.	ALAT DAN BAHAN	21
	3.2.1. Alat Pengujian	21
	3.2.2. Objek Pengujian	22
3.3.	PROSEDUR PENGUJIAN GETARAN MENGGUNAKAN FFT	
	ANALYZER ONNO SOKKI	24
3.4.	CF-3600 PROSES PENGOLAHAN	25
	DATA	
BAB IV	HASIL DAN PEMBAHASAN	29
4.1.	HASIL PENELITIAN PADA KENDARAAN RODA EMPAT	
	KAPASITAS 1200CC	29
4.2.	HASIL PENELITIAN PADA KENDARAAN RODA EMPAT	
	KAPASITAS 1300CC	34
4.3.	IDENTIFIKASI HILBERT TRANSFORM (HT)	39
	4.3.1. Hasil perhitungan Hilbert Transform pada kendaraan roda e	mpat
kapasitas	s 1200cc dengan kecepatan putar 2000rpm	39
	4.3.2. Hasil perhitungan Hilbert Transform pada kendaraan roda e	mpat
kapasitas	s 1200cc dengan kecepatan putar 2000rpm	41
	UNIVERSITAS	
BAB V	PENUTUPERCU BUANA	44
5.1.	KESIMPULAN	44
5.2.	SARAN	45
DAFTA	R PUSTAKA	46
LAMPIRAN		

DAFTAR GAMBAR

Gambar 2.1. Komponen Sistem Getaran.	8
Gambar 2.2. Ilustrasi Domain Waktu Dan Domain Frekuensi.	9
Gambar 2.3. Contoh Bentuk Domain Waktu Data.	9
Gambar 2.4. Contoh Bentuk Domain Frekuensi Data.	10
Gambar 2.5. Engine Mounting.	11
Gambar 2.6. Damping Descriptors.	12
Gambar 2.7. Sumbutorsi.	14
Gambar 2.8. Kasus 1(A), Dua Dudukan Berorientasi Simetris, Kasus 2	(B), Dua
Dudukan Dengan Sumbu Tegak Lurus Satu Sama Lain, Da	an Kasus
3(C), Dua Dudukan Vertikal Dengan Tarif Berbeda.	14
Gambar 3.1. Diagram Alir	18
Gambar 3.2. Ono Sokki Cf-3600.	20
Gambar 3.3. Skema Tahapan Pengujian Getaran Mounting	21
Gambar 3.4. Fast Fourier Transform	22
Gambar 3.5. Accelerometer	22
Gambar 3.6. Sensor Accelerometer	22
Gambar 3.7. Keramik Isolator V E R S I T A S	22
Gambar 3.8. Tool Box DCII DIIANIA	22
Gambar 3.9. (A)Objek Pengujian Mounting Pada Kendaraan Toyota Calya,	, Dan (B)
Objek Pengujian Mounting Pada Kendaraan Daihatsu Xenia	23
Gambar 3.10. Posisi Sensor Pada Objek Pengujian Kendaraan Kapasitas 12	00cc (A),
Kapasitas 1300c (B)	24
Gambar 3.11. Diagram Alir Pengambilan Data	25
Gambar 3.12. Contoh Data .Txt.	26
Gambar 3.13. Contoh Hasil Data Grafik Fft Analyzer	26
Gambar 3.14. Contoh Data Grafik Envelope	27
Gambar 3.15. Contoh Data Grafik Instantaneous Frequency	27
Gambar 3.16. Contoh Data Grafik Restoring Force	28
Gambar 4.1. Hasil Fft Gabungan Normal Dan Rusak Pada Injektor Pada S	Sumbu X
Dengan Kecepatan Putaran 900rpm	30

Gambar 4.2. Hasil Fft Gabungan Normal Dan Rusak Pada Injektor Pada Sumbu X
Dengan Kecepatan Putaran 2000rpm 31
Gambar 4.3. Hasil Fft Gabungan Normal Dan Rusak Pada Injektor Pada Sumbu X
Dengan Kecepatan Putaran 4000rpm 33
Gambar 4.4. Hasil Fft Gabungan Normal Dan Rusak Pada Injektor Pada Sumbu X
Dengan Kecepatan Putaran 900rpm 34
Gambar 4.5. Hasil Fft Gabungan Normal Dan Rusak Pada Injektor Pada Sumbu X
Dengan Kecepatan Putaran 2000rpm 36
Gambar 4.6. Hasil Fft Gabungan Normal Dan Rusak Pada Injektor Pada Sumbu X
Dengan Kecepatan Putaran 4000 Rpm 38
Gambar 4.7. Envelope Sinyal Getaran Pada Mounting Saat Kondisi Kendaraan
Normal (A), Dan Kondisi Kendaraan Pada Injector (B) Ketika
Beroperasi Pada 2000rpm Berdasarkan Hilbert Transform 39
Gambar 4.8. Frekuensi Instantaneous (Sesaat) Getaran Kondisi Kendaraan Rusak
Pada Injektor Dan Normal Berdasarkan Hilbert Transform 40
Gambar 4.9. Restoring Force Kondisi Normal(A) Dan Kondisi Rusak Pada
Injektor(B) 41
Gambar 4.10. Envelope Sinyal Getaran Pada Mounting Saat Kondisi Kendaraan
Normal (A), Dan Rusak Pada Injector (B) Ketika Beroperasi Pada
2000rpm Berdasarkan <i>Hilbert Transform</i> 41
Gambar 4.11. Frekuensi Instantaneous (Sesaat) Getarankondisikerusakan Pada
Injektor Dan Normal Berdasarkan Hilbert Transform 42
Gambar 4.12. Restoring Force Kondisi Normal Dan Kondisi Kerusakan Pada
Injektor 43

DAFTAR TABEL

Tabel 2.1. Penelitian Terdahulu	5
Tabel 3. 1 Alat Pengujian	22
Tabel 3. 2 Spesifikasi Kendaraan Roda Empat Kapasitas 1200 Cc	23
Tabel 3. 3. Spesifikasi Kendaraan Roda Empat Kapasitas 1300cc	23
Tabel 4.1. Data Frekuensi Gabungan Normal Dan Kerusakan Injektor Pada	Sumbu X
Dengan Kecepatan Putaran 900rpm	30
Tabel 4.2. Data Frekuensi Gabungan Normal Dan Kerusakan Injektor Pada	Sumbu X
Dengan Kecepatan Putaran 2000rpm	32
Tabel 4.3. Data Frekuensi Gabungan Normal Dan Kerusakan Injektor Pada	Sumbu X
Dengan Kecepatan Putaran 4000rpm	33
Tabel 4.4. Data Frekuensi Gabungan Normal Dan Kerusakan Injektor Pada	Sumbu X
Dengan Kecepatan Putaran 900rpm	35
Tabel 4.5. Data Frekuensi Gab <mark>ungan Normal</mark> Dan Kerusakan Injektor Pada	Sumbu X
Dengan Kecepatan Putaran 2000 Rpm	36
Tabel 4.6. Data Frekuensi Gabungan Normal Dan Kerusakan Injektor Pada	Sumbu X
Dengan Kecepatan Putaran 4000 Rpm	38

