

Analisa Data Rekam Medis Menggunakan Teknik Data Mining Association Rules Dengan Algoritma Clustering

TUGAS AKHIR

Muhamad Iqbal 41516010171

PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS ILMU KOMPUTER
UNIVERSITAS MERCU BUANA
JAKARTA
L 2020 A A A

Analisa Data Rekam Medis Menggunakan Teknik Data Mining Association Rules Dengan Algoritma Clustering

Tugas Akhir

Diajukan Untuk Melengkapi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer

> Oleh: Muhamad Iqbal 41516010171

PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER UNIVERSITAS MERCU BUANA JAKARTA

MERCU BUANA

LEMBAR PERNYATAAN ORISINALITAS

LEMBAR PERNYATAAN ORISINALITAS

Yang bertanda tangan dibawah ini: NIM : Muhamad Iqbal Nama : 41516010171

Judul Tugas Akhir : Analisa Data Rekam Medis Menggunakan Teknik Data

Mining Association Rules Dengan Algoritma Clustering

Menyatakan bahwa Laporan Tugas Akhir saya adalah hasil karya sendiri dan bukan plagiat. Apabila ternyata ditemukan didalam laporan Tugas Akhir saya terdapat unsur plagiat, maka saya siap untuk mendapatkan sanksi akademik yang terkait dengan hal tersebut.

SURAT PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR

SURAT PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR

Sebagai mahasiswa Universitas Mercu Buana, saya yang bertanda tangan di bawah ini :

Nama Mahasiswa : Muhamad Iqbal NIM : 41516010171

Judul Tugas Akhir : Analisa Data Rekam Medis Menggunakan Teknik

Data Mining Association Rules Dengan Algoritma

Clustering

Dengan ini memberikan izin dan menyetujui untuk memberikan kepada Universitas Mercu Buana Hak Bebas Royalti Noneksklusif (None-exclusive Royalty Free Right) atas karya ilmiah saya yang berjudul diatas beserta perangkat yang ada (jika diperlukan).

Dengan Hak Bebas Royalti/Noneksklusif ini Universitas Mercu Buana berhak menyimpan, mengalihmedia/formatkan, mengelola dalam bentuk pangkalan data (database), merawat dan mempublikasikan tugas akhir saya.

Selain itu, demi pengembangan ilmu pengetahuan di lingkungan Universitas Mercu Buana, saya memberikan izin kepada Peneliti di Lab Riset Fakultas Ilmu Komputer, Universitas Mercu Buana untuk menggunakan dan mengembangkan hasil riset yang ada dalam tugas akhir untuk kepentingan riset dan publikasi selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Jakarta, 02 September 2020

LEMBAR PERSETUJUAN PENGUJI

NIM : 41516010171

Nama : Muhamad Iqbal

Judul Tugas Akhir : Analisa Data Rekam Medis Menggunakan Teknik

Data Mining Association Rules Dengan Algoritma

Clustering

Tugas Akhir ini telah diperiksa dan disidangkan sebagai salah satu persyaratan untuk memperoleh gelar Sarjana pada Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Mercu Buana.

Jakarta, 26 Agustus 2020

LEMBAR PERSETUJUAN PENGUJI

NIM : 41516010171

Nama : Muhamad Iqbal

Judul Tugas Akhir : Analisa Data Rekam Medis Menggunakan Teknik

Data Mining Association Rules Dengan Algoritma

Clustering

Tugas Akhir ini telah diperiksa dan disidangkan sebagai salah satu persyaratan untuk memperoleh gelar Sarjana pada Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Mercu Buana.

 $Jakarta,\,26-Agustus\,\textbf{-}\,2020$

LEMBAR PERSETUJUAN PENGUJI

NIM : 41516010171

Nama : Muhamad Iqbal

Judul Tugas Akhir : Analisa Data Rekam Medis Menggunakan Teknik

Data Mining Association Rules Dengan Algoritma

Clustering

Tugas Akhir ini telah diperiksa dan disidangkan sebagai salah satu persyaratan untuk memperoleh gelar Sarjana pada Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Mercu Buana.

Jakarta, 26 – Agustus - 2020

(Herry Derajad Wijaya, S.Kom., MM)

MERCU BUANA

LEMBAR PENGESAHAN

NIM : 41516010171

Nama : Muhamad Iqbal

Judul Tugas Akhir : Analisa Data Rekam Medis Menggunakan Teknik Data

Mining Association Rules Dengan Algoritma Clustering

Tugas Akhir ini telah diperiksa dan disidangkan sebagai salah satu persyaratan untuk memperoleh gelar Sarjana pada Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Mercu Buana.

 $Jakarta,\,26-Agustus-2020$

Menyetujui,

(DR. Mujiono Sadikin, MT, CISA, CGEIT)
Dosen Pembimbing

UNIVERSITAS

MER Mengetahui, JANA

(Wawan Surawan, S.Kom., MT) Koord. Tugas Akhir Teknik Informatika (Ir. Emil R. Kaburuan, Ph D., IPM)

Ka. Prodi Teknik Informatika

ABSTRAK

Nama : Muhamad Iqbal NIM : 41516010171

Pembimbing TA : DR.Mujiono Sadikin, MT, CISA, CGEIT

Judul : Analisa Data Rekam Medis Menggunakan Teknik

Data Mining Association Rules Dengan Algoritma

Clustering

Data informasi pasien yang terletak di pusat kesehatan dan rumah sakit ada di bentuk kode ICD. Data Rekam Medis tidak hanya berupa tumpukan berkas, tetapi dapat berupa digunakan untuk mengekstrak informasi yang terkandung di dalamnya. Beberapa informasi yang dapat dimanfaatkan adalah informasi kelompok penyakit yang sering diderita oleh pasien di rumah sakit. Kelompok informasi penyakit ini dapat dimanfaatkan oleh manajer dalam mengembangkan pelayanan kepada pasien. Dari sisi pasien dapat memanfaatkan tujuan pengobatan yang lebih tepat sasaran dalam sesuai dengan penyakit yang dideritanya. Untuk menentukan analisis ini tumpukan rekam medis menggunakan pengelompokan, termasuk pengelompokan wilayah, pengelompokan gender, pengelompokan usia, dan pengelompokan kode ICD. Dalam studi ini Kode ICD yang digunakan adalah ICD 10. Preposesing data rekam medis dibagi menjadi dua: pertama data pelatihan dan kedua adalah data uji.

Kata kunci:

Algoritma Clustering, Data Mining, Medical Record, Association Rules, ICD.

ABSTRACT

Name : Muhamad Iqbal Student Number : 41516010171

Counsellor : DR.Mujiono Sadikin, MT, CISA, CGEIT

Title : Analisa Data Rekam Medis Menggunakan Teknik

Data Mining Association Rules Dengan Algoritma

Clustering

Patient information data located in medical centers and hospitals are in the form of ICD codes. Medical Record data is not just a pile of files, but can be used to extract the information contained therein. Some information that can be utilized is the information group of diseases that often suffered by patients in the hospital. Information group of this disease can be utilized by the manager in developing services to patients. From the side of the patient can take advantage of treatment goals are more appropriate target in accordance with the disease he suffered. To determine the analysis of this stack of medical records using groupings, including grouping of regions, gender groupings, age groupings, and ICD code groupings. In this study ICD code used is ICD 10. Preposecing medical record data is divided into two, first data training and second is test data.

Key words:

Clustering Algorithm, Data Mining, Medical Record, Association Rules, ICD.

KATA PENGANTAR

Puji syukur kita panjatkan kita panjatkan kepada Tuhan Yang Maha Esa, karena dengan rahmat dan karunianya, penulis dapat menyelesaikan skripsi yang dibuat dan diajukan untuk memenuhi syarat guna untuk memperoleh gelar sarjana (S1) pada Fakultas Ilmu Komputer di Universitas Mercu Buana. Selama penulisan skripsi ini, penulis banyak menerima bantuan dan dukungan sehingga dapat menyelesaikan skripsi ini. Oleh karena itu, penulis mengucapkan terima kasih kepada:

- 1. Bapak DR.Mujiono Sadikin, MT, CISA, CGEIT. selaku Dosen Pembimbing skripsi yang membimbing dan memberikan saran untuk penulis sehingga dapat selesai tepat waktu. Dan selaku Dosen Pembimbing akademik.
- 2. Bapak Diky Firdaus, S.Kom, MM. selaku Koordinator Tugas Akhir Teknik Informatika.
- 3. Kedua Orang Tua yang selalu memberikan support terbaik berupa doa, motivasi dan materi sehingga penelitian ini dapat berjalan lancer sebagaimana mestinya.
- 4. Selanjutnya, penulis ingin mengucapkan terima kasih kepada teman-teman Teknik Informatika angkatan 2016 membantu dalam proses penulisan laporan skripsi ini yang tidak mungkin disebutkan satu per satu.

Akhir kata, dengan segala kerendahan hati penulis memohon maaf yang sebesar-besarnya atas kekurangan dan keterbatasan dalam penyusunan skripsi ini. Oleh karena itu saya mengharapkan saran dan kritik yang dapat menyempurnakan penulisan ini sehingga dapat bermanfaat dan berguna untuk pengembangan ilmu pengetahuan, Amiin.

Jakarta, 15 Agustus 2020

Muhamad Iqbal

I. TOPIK / BIDANG ILMU

Berisi topik / bidang ilmu yang akan dibahas, disesuaikan dengan topik / bidang ilmu yang ada pada Tugas Akhir, yaitu

Data Mining, Machine Learning

II. DAFTAR JURNAL (MINIMAL 20)

Bagian ini berisi daftar judul artikel yang akan di review. Dimana terdiri dari*

- 1. Minimal 5 Jurnal dari jurnal terakreditasi Nasional Sinta pada web http://sinta.ristekbrin.go.id/, bisa dicari di http://garuda.ristekbrin.go.id/
- 2. Minimal 5 Jurnal yang terindeks Scopus atau science direct dan jurnal bereputasi laiinnya
- 3. Maximal 5 jurnal yang tidak termasuk dalam point 1,2

No	Judul Jurnal	Kategori (diisi dengan 1/2/3)*	
1.	Personal and social patterns predict influenza vaccination decision.	Jurnal Internasional	
2.	A data-driven approach to predicting diabetes and cardiovascular disease with machine	Jurnal Internasional	
	learning.		
3.	A Machine-Learning-Based Prediction	Jurnal Internasional	
	Method for Hypertension Outcomes Based on		
	Medical Data.		
4.	Estimating summary statistics for electronic	Jurnal Internasional	
	health record laboratory data for use in high-		
	throughput phenotyping algorithms.		
5.	Pathway analysis using XGBoost	Jurnal Internasional	
	classification in Biomedical Data.		
6.	How context affects implementation of the	Jurnal Internasional	
	Primary Health Care approach: an analysis of		

	what happened to primary health centres in	
	India.	
7.	Predicting opioid dependence from electronic	Jurnal Internasional
	health records with machine learning	
8.	Machine learning to predict rapid progression	Jurnal Internasional
	of carotid atherosclerosis in patients with	
	impaired glucose tolerance.	
9.	Using a machine learning approach to predict	Jurnal Internasional
	mortality in critically ill influenza patients: a	
	cross-sectional retrospective multicentre study	
	in Taiwan.	
10.	Diagnosis of Cervical cancer using CLAHE	Jurnal Internasional
	and SGLDM on RGB Pap smear Images	
	through ANN.	
11.	Identifying Medical Diagnoses and Treatable	Jurnal Internasional
	Diseases by Image-Based Deep Learning.	
12.	An infrastructure for precision medicine	Jurnal Internasional
	through analysis of big data.	
13.	Imputation and characterization of uncoded	Jurnal Internasional
	self-harm in major mental illness using	
	machine learning.	S
14.	API design for machine learning software:	Jurnal Internasional
	experiences from the scikit-learn project.	INA
15.	Aerial Mapping of Forests Affected by	Jurnal Internasional
	Pathogens Using UAVs, Hyperspectral	
	Sensors, and Artificial Intelligence.	
16.	A metabolite-based machine learning	Jurnal Internasional
	approach to diagnose Alzheimer-type	
	dementia in blood: Results from the European	
	Medical Information Framework for	
	Alzheimer disease biomarker discovery	
	cohort.	
17.	Prediction of future gastric cancer risk using a	Jurnal Internasional
	machine learning algorithm and	

	comprehensive medical check-up data: A	
	casecontrol study.	
18.	Predicting urinary tract infections in the	Jurnal Internasional
	emergency department with machine learning	
19.	Predictive models to assess risk of type 2	Jurnal Internasional
	diabetes, hypertension and comorbidity:	
	machine-learning algorithms and validation	
	using national health data from Kuwait—a	
	cohort study.	
20.	Prediction of Acute Kidney Injury With a	Jurnal Internasional
	Machine Learning Algorithm Using	
	Electronic Health Record Data.	

III.TABEL REVIEW

No	RIVERSITAS
Judul Artikel ME	Personal and social patterns predict influenza vaccination decision. [1]
Topik	Data Mining
Data	Anonymized Electronic Medical Records 2007 - 2017
Metode / Algoritma	Personal pattern analysis, Social pattern analysis, predictive modeling.
Abstrak	Secara umum, cakupan vaksinasi influenza musiman tetap suboptimal di sebagian besar negara maju rekomendasi lama dari organisasi kesehatan masyarakat. Keputusan individu mengenai vaksinasi adalah terletak di inti ketidakpatuhan. Menganalisis data skala besar untuk mengidentifikasi perilaku pribadi dan social pola untuk pengambilan vaksinasi influenza, dan mengembangkan model untuk memprediksi keputusan vaksinasi individu dalam suatu musim influenza mendatang.

	Keputusan vaksinasi seseorang dapat dijelaskan dalam dua
	dimensi, Pribadi dan sosial. Itu dimensi pribadi sangat dibentuk
	oleh perilaku "default", seperti waktu vaksinasi di musim
	sebelumnya dan konsumsi kesehatan umum, tetapi juga dapat
	dipengaruhi oleh faktor-faktor temporal seperti penyakit
	pernapasan pada tahun sebelumnya. Dalam dimensi sosial,
	seorang pasien lebih mungkin untuk divaksinasi pada musim
Trad	tertentu jika setidaknya satu anggotanya keluarga juga
Hasil	divaksinasi pada musim yang sama. Penyerapan vaksinasi
	sangat asertif dengan usia, sosial ekonomi skor, dan lokasi
	geografis. Model prediksi berbasis XGBoost mencapai skor
	ROC-AUC 0,91 dengan akurasi dan tingkat penarikan 90% pada
	set tes. Prediksi terutama bergantung pada vaksinasi individu
	dan rumah tangga pasien status di masa lalu, usia, jumlah
	pertemuan dengan sistem perawatan kesehatan, jumlah obat
	yang diresepkan, dan indikator penyakit kronis.
	Kemampuan untuk membuat prediksi yang sangat baik tentang
Kesimpulan	keputusan pasien membuat langkah besar menuju personalisasi
Keshiputan	kampanye vaksinasi influenza, dan akan membantu membentuk
	generasi berikutnya dari upaya vaksinasi yang ditargetkan.
Penulis	Adir Shaham, Gabriel Chodick, Varda Shalev Dan Yamin.
Nama jurnal, Volume, Nomor, Tahun	BMC Public Health, 20:222, 2016
IVIE	Penulisan Artikel ini secara keseluruhann nya adalah baik dan
	mudah dipahami. Ulasan artikel dari Penelitian tujuannya untuk:
	a) Mengidentifikasi perilaku pribadi dan sosial pola dan
	indikator serapan vaksinasi influenza, dan b) menggunakan
	indikator ini untuk mengembangkan pembelajaran mesin model
	yang akan memprediksi keputusan vaksinasi individu di musim
Ulasan artikel	I
	influenza mendatang. Dengan menganalisis data skala besar
	untuk mengidentifikasi perilaku pribadi dan sosial pola
	untuk mengidentifikasi perilaku pribadi dan sosial pola
	untuk mengidentifikasi perilaku pribadi dan sosial pola penyerapan vaksinasi influenza, dan mengembangkan model
	untuk mengidentifikasi perilaku pribadi dan sosial pola penyerapan vaksinasi influenza, dan mengembangkan model untuk memprediksi keputusan vaksinasi individu di musim

membantu membentuk generasi berikutnya dari upaya vaksinasi yang ditargetkan. Dalam artikel menngunakan metode Personal pattern analysis, Social pattern analysis dan predictive modeling sebagai pendukung pengambilan keputusan untuk sebagai pertimbangan keputusan pasien. Hasil yang di dapat mengidentifikasi beberapa pola perilaku terkait vaksinasi influenza dan mengembangkan model pembelajaran mesin yang memprediksi pengambilan keputusan individu di musim selanjutnya. Dan menunjukkan bahwa vaksinasi keputusan individu dapat dijelaskan dalam dua dimensi - pribadi dan sosial. Dimensi pribadi sangat dibentuk oleh perilaku "default" pendekatan, yang sering dimanifestasikan dalam keputusan vaksinasi berulang di musim berikutnya, lebih disukai waktu vaksinasi dalam satu musim. Pendekatan ini dikaitkan dengan pengukuran konsumsi perawatan kesehatan pasien. menemukan bukti yang dapat dipengaruhi oleh perilaku "default" ini efek sementara seperti penyakit pernapasan barubaru ini diagnosis, menunjukkan bahwa mengalami penyakit pernapasan baru-baru ini mengubah persepsi pasien tentang risiko yang terkait dengan influenza. Dimensi sosial terbagi menjadi lingkungan sosial dan langsung keluarga. mengamati perbedaan yang signifikan dalam tingkat vaksinasi antara wilayah geografis dan pasien dengan skor sosial ekonomi yang berbeda. Hasil mengamati bahwa anggota keluarga cenderung memiliki kesamaan keputusan vaksinasi. Kemungkinan besar sementara sosial Lingkungan menetapkan pendekatan umum terhadap vaksinasi influenza sebagai konteks, kerabat dekat dapat mempengaruhi keputusan ad-hoc seseorang. Pola ini berfungsi sebagai dasar untuk model pembelajaran mesin prediktif, yang memanfaatkan data EMR dan data demografis untuk memberikan prediksi yang sangat baik tentang vaksinasi individu di masa mendatang keputusan. Keputusan vaksinasi sebelumnya, seiring dengan usia, jumlah pertemuan dengan sistem perawatan kesehatan, dan resep, berfungsi sebagai prediktor terkuat dari a keputusan vaksinasi di masa depan.

ME

Dalam kasus dimana keluarga Keputusan vaksinasi di musim
sebelumnya disediakan, itu juga berfungsi sebagai prediktor
yang kuat. Modelnya sederhana menunjukkan bagaimana
prediksi yang sangat akurat dicapai bahkan ketika hanya
sebagian kecil dari pasien informasi pribadi dan sosial tersedia.

No	2
Judul Artikel	A data-driven approach to predicting diabetes and
	cardiovascular disease with machine learning.[2].
Topik	Data Mining
Data	National Health and Nutrition Examination Survey (NHANES)
Butu	dataset.
Metode / Algoritma	Machine Learning Models
	Diabetes dan penyakit kardiovaskular adalah dua penyebab
	utama kematian di Amerika Serikat. Mengidentifikasi dan
	memprediksi penyakit ini pada pasien adalah langkah pertama
Abstrak	untuk menghentikan perkembangan mereka. Mengevaluasi
	kemampuan model pembelajaran mesin dalam mendeteksi
	pasien berisiko menggunakan data survei (dan hasil
	laboratorium), dan mengidentifikasi variabel kunci dalam data
U	yang berkontribusi terhadap penyakit ini di antara pasien.
ME	Model ensemble yang dikembangkan untuk penyakit kardiovaskular (berdasarkan 131 variabel) mencapai Area
	Bawah - Skor Receiver Operating Characteristics (AU-ROC)
	sebesar 83,1% tanpa menggunakan hasil laboratorium, dan
	akurasi 83,9% dengan hasil laboratorium. Dalam klasifikasi
	diabetes (berdasarkan 123 variabel), model eXtreme Gradient
Hasil	Boost (XGBoost) mencapai skor AU-ROC sebesar 86,2%
Tiasii	(tanpa data laboratorium) dan 95,7% (dengan data
	laboratorium). Untuk pra-diabetes pasien, model ensemble
	memiliki skor AU-ROC tertinggi 73,7% (tanpa data
	laboratorium), dan untuk berbasis laboratorium data XGBoost
	melakukan yang terbaik di 84,4%. Lima prediktor teratas pada
	pasien diabetes adalah 1) ukuran pinggang, 2) usia, 3) berat
	badan yang dilaporkan sendiri, 4) panjang kaki, dan 5) asupan

	natrium. Untuk penyakit kardiovaskular, model diidentifikasi 1)
	usia, 2) tekanan darah sistolik, 3) berat badan yang dilaporkan
	sendiri, 4) terjadinya nyeri dada, dan 5) tekanan darah diastolik
	sebagai kunci kontributor.
	Makalah ini menyimpulkan model yang dipelajari mesin
	berdasarkan kuesioner survei dapat memberikan otomatis
Kesimpulan	mekanisme identifikasi untuk pasien yang berisiko diabetes dan
Kesimpulan	penyakit kardiovaskular. Juga mengidentifikasi kontributor
	utama untuk prediksi, yang dapat dieksplorasi lebih lanjut untuk
	implikasinya pada catatan kesehatan elektronik.
Penulis	An Dinh, Stacey Miertschin, Amber Young dan Somya D.
renuits	Mohanty.
Nama jurnal, Volume, Nomor, Tahun	BMC Medical Informatics and Decision Making, 19:211, 2019.
	Penulisan Artikel ini secara keseluruhann nya adalah baik dan
	mudah dipahami. Ulasan artikel dari Penelitian ini untuk
	Mengidentifikasi dan memprediksi penyakit Kardiovaskular
	dan Diabetes. Latar belakang yang terjadi adalah Diabetes dan
	penyakit kardiovaskular adalah dua penyebab utama kematian
	di Amerika Serikat. Dan penelitian ini bertujuan untuk
	Mengidentifikasi dan memprediksi penyakit ini pada pasien
11	adalah langkah pertama untuk menghentikan
DAE	perkembangannya. Dengan mengevaluasi kapabilitas model
IVIE	pembelajaran mesin dalam mendeteksi pasien berisiko
Ulasan artikel	menggunakan data survei (dan hasil laboratorium), dan
Clasari artiker	mengidentifikasi variabel kunci dalam data yang berkontribusi
	terhadap penyakit ini di antara pasien. Makalah ini
	menyimpulkan model yang dipelajari mesin berdasarkan
	kuesioner survei dapat memberikan otomatis mekanisme
	identifikasi untuk pasien yang berisiko diabetes dan penyakit
	kardiovaskular. Juga mengidentifikasi kontributor utama untuk
	prediksi, yang dapat dieksplorasi lebih lanjut untuk
	implikasinya pada catatan kesehatan elektronik. Mengevaluasi
	kemampuan model pembelajaran mesin dalam mendeteksi
	pasien berisiko menggunakan data survei (dan hasil
	laboratorium), dan mengidentifikasi variabel kunci dalam data

yang berkontribusi terhadap penyakit ini di antara pasien. Lima prediktor teratas pada pasien diabetes adalah 1) ukuran pinggang, 2) usia, 3) berat badan yang dilaporkan sendiri, 4) panjang kaki, dan 5) asupan natrium. Untuk penyakit kardiovaskular, model diidentifikasi 1) usia, 2) tekanan darah sistolik, 3) berat badan yang dilaporkan sendiri, 4) terjadinya nyeri dada, dan 5) tekanan darah diastolik sebagai kunci kontributor. Penelitian ini mengeksplorasi pendekatan berbasis data yang memanfaatkan model pembelajaran mesin yang diawasi untuk mengidentifikasi pasien dengan penyakit tersebut. Menggunakan dataset National Health and Nutrition Examination Survey (NHANES), dan melakukan pencarian menyeluruh dari semua variabel fitur yang tersedia dalam data untuk mengembangkan model kardiovaskular, pradiabetes, dan deteksi diabetes. Menggunakan kerangka waktu yang berbeda dan set fitur untuk data (berbasis pada data laboratorium), beberapa model pembelajaran mesin (regresi logistik, mesin vektor dukungan, hutan acak, dan peningkatan gradien) dievaluasi berdasarkan kinerja klasifikasinya. Model tersebut kemudian digabungkan menjadi mengembangkan model ansambel berbobot, yang mampu meningkatkan kinerja model yang berbeda akurasi deteksi. Keuntungan informasi dari model berbasis pohon digunakan untuk mengidentifikasi variabel kunci dalam pasien data yang berkontribusi pada deteksi pasien berisiko di setiap kelas penyakit dengan model data-learn.

No	3	
Judul Artikel	A Machine-Learning-Based Prediction Method for Hypertension Outcomes Based on Medical Data.[3]	
Topik	Data Mining	
Data	-	
Metode / Algoritma Support Vector Machine (SVM), C4.5 decision tre forest, dan XGBoost.		
Abstrak	Hasil dari hipertensi merujuk pada kematian atau komplikasi serius yang mungkin terjadi pada pasien dengan hipertensi.	

Hasil dari hipertensi adalah sangat memprihatinkan bagi pasien dan dokter, dan idealnya dihindari. Langkah pertama adalah mengekstraksi fitur-fitur utama dari banyak indikator pemeriksaan fisik pasien. Langkah kedua adalah menggunakan fitur-fitur utama diekstraksi dari langkah pertama untuk memprediksi hasil pasien. Untuk tujuan ini, mengusulkan model menggabungkan eliminasi fitur rekursif dengan metode validasi silang dan algoritma klasifikasi. Metrik evaluasi kinerja prediksi model yang dipilih adalah akurasi, Ukuran F1, dan area di bawah kurva karakteristik operasi penerima. 10 kali lipat validasi silang menunjukkan bahwa C4.5, RF, dan XGBoost dapat mencapai hasil prediksi yang sangat baik dengan sejumlah kecil fitur, dan pengklasifikasi setelah penghapusan fitur rekursif dengan pemilihan fitur validasi silang memiliki kinerja prediksi yang lebih baik.

ME

Hasil

Menurut metode pemilihan fitur yang diusulkan dalam makalah ini, subset fitur yang dipilih oleh RFECV dipengaruhi oleh dua aspek: satu adalah classifier yang dikombinasikan dengan RFECV, dan yang lainnya adalah kriteria evaluasi kinerja dari classifier. Saat memilih berbagai pengklasifikasi atau kriteria evaluasi kinerja, subset fitur seringkali tidak sama. Tabel 4 mencantumkan jumlah himpunan bagian fitur optimal untuk setiap classifier di bawah tiga kriteria evaluasi. Dari Tabel 5, dapat dilihat bahwa jumlah fitur redundan dapat sangat dikurangi dengan metode pemilihan fitur yang diusulkan dalam makalah ini, yang akan membantu menghemat efisiensi komputasi dan meningkatkan efek prediksi model. Performa prediksi masing-masing classifier menggunakan subset fitur optimal mereka. Gambar 3 menunjukkan tren akurasi untuk empat pengklasifikasi menggunakan berbagai fitur. Gambar 4 menunjukkan tren ukuran F1 untuk empat pengklasifikasi menggunakan jumlah fitur yang berbeda. Gambar 5 menunjukkan tren AUC untuk empat pengklasifikasi menggunakan jumlah fitur yang berbeda. Dari Tabel 6 dan Gambar 3, kita dapat menemukan akurasi tertinggi dari empat

	pengklasifikasi ini di bawah kriteria yang berbeda. Memotong
	atau menambahkan fitur lain akan mengurangi akurasi.
	Kemudian, dengan peningkatan jumlah fitur, kinerja memiliki
	tren penurunan dan volatilitas yang signifikan. Kinerja prediksi
	XGBoost kurang dipengaruhi oleh jumlah fitur.
	Memprediksi hasil dari pasien hipertensi adalah pekerjaan
	penelitian yang sangat berarti. Untuk pekerjaan ini, makalah ini
	mengusulkan metode yang menggabungkan classifier dengan
	RFECV untuk secara akurat memprediksi hasil pasien secara
	otomatis. Metode RFE digunakan untuk menilai pentingnya
	indikator pemeriksaan fisik untuk hasil hipertensi. Eksperimen
	menunjukkan bahwa metode RFEVC yang dikombinasikan
	dengan C4.5, RF, dan XGBoost dapat mencapai kinerja prediksi
	yang lebih baik. Selain itu, melalui RFECV menemukan bahwa
Kesimpulan	tekanan darah ekstremitas dan tekanan darah rawat jalan
	memiliki efek penting pada hasil hipertensi. Metode yang
	diusulkan dalam makalah ini dapat secara efektif membantu
	dokter untuk menentukan apakah akan ada hasil pada pasien
	dengan hipertensi. Dengan cara ini, dokter dapat memberikan
	intervensi yang ditargetkan untuk pasien dengan risiko hasil
	yang lebih tinggi dan mengurangi kemungkinan hasil. Pertama,
	kita akan mendapatkan kumpulan data yang lebih besar dari
ME	lebih banyak sumber data untuk menguji lebih lanjut
	kemampuan generalisasi dari metode yang usulkan.
Penulis	Wenbing Chang, Yinglai Liu, Yiyong Xiao, Xinglong Yuan,
Nama jurnal, Volume, Nomor, Tahun	Xingxing Xu, Siyue Zhang dan Shenghan Zhou. Diagnostics, 9, 178, 2019.
	Penulisan Artikel ini secara keseluruhann nya adalah baik dan
	mudah dipahami. Ulasan artikel dari Penelitian ini untuk
	Memprediksi hasil dari pasien hipertensi adalah pekerjaan
	penelitian yang sangat berarti. Untuk pekerjaan ini, makalah ini
Ulasan artikel	mengusulkan metode yang menggabungkan classifier dengan
	RFECV untuk secara akurat memprediksi hasil pasien secara
	otomatis. Metode RFE digunakan untuk menilai pentingnya
	indikator pemeriksaan fisik untuk hasil hipertensi. Eksperimen
	menunjukkan bahwa metode RFEVC yang dikombinasikan

dengan C4.5, RF, dan XGBoost dapat mencapai kinerja prediksi yang lebih baik. Selain itu, melalui RFECV menemukan bahwa tekanan darah ekstremitas dan tekanan darah rawat jalan memiliki efek penting pada hasil hipertensi. Metode yang diusulkan dalam makalah ini dapat secara efektif membantu dokter untuk menentukan apakah akan ada hasil pada pasien dengan hipertensi. Dengan cara ini, dokter dapat memberikan intervensi yang ditargetkan untuk pasien dengan risiko hasil yang lebih tinggi dan mengurangi kemungkinan hasil. Pertama, kita akan mendapatkan kumpulan data yang lebih besar dari lebih banyak sumber data untuk menguji lebih lanjut kemampuan generalisasi dari metode yang di usulkan. Hasil dari hipertensi merujuk pada kematian atau komplikasi serius yang mungkin terjadi pada pasien dengan hipertensi. Hasil dari hipertensi adalah sangat memprihatinkan bagi pasien dan dokter, dan idealnya dihindari. Langkah pertama adalah mengekstraksi fitur-fitur utama dari banyak indikator pemeriksaan fisik pasien. Langkah kedua adalah menggunakan fitur-fitur utama diekstraksi dari langkah pertama untuk memprediksi hasil pasien. Untuk tujuan ini, mengusulkan model menggabungkan eliminasi fitur rekursif dengan metode validasi silang dan algoritma klasifikasi. Metrik evaluasi kinerja prediksi model yang dipilih adalah akurasi, Ukuran F1, dan area di bawah kurva karakteristik operasi penerima. 10 kali lipat validasi silang menunjukkan bahwa C4.5, RF, dan XGBoost dapat mencapai hasil prediksi yang sangat baik dengan sejumlah kecil fitur, dan pengklasifikasi setelah penghapusan fitur rekursif dengan pemilihan fitur validasi silang memiliki kinerja prediksi yang lebih baik.

No	4
	Estimating summary statistics for electronic health record
Judul Artikel	laboratory data for use in high-throughput phenotyping
	algorithms.[4]
Topik	Data Mining

Data	Electronic health record (EHR).
Metode / Algoritma	PopKLD
	Mempelajari pertanyaan tentang bagaimana untuk mewakili
	atau meringkas data laboratorium mentah yang diambil dari
	catatan kesehatan elektronik menggunakan pemilihan model
	parametrik untuk mengurangi atau mengatasi bias yang
	diinduksi melalui perawatan klinis. Sebelumnya telah
	ditunjukkan bahwa proses perawatan kesehatan, sebagaimana
	didefinisikan oleh konteks pengukuran dan pola pengukuran,
	dapat mempengaruhi bagaimana data EHR didistribusikan
	secara statistik. mengevaluasi metodologi dengan dua cara.
	Pertama, menerapkan metode ini ke data laboratorium yang
	dikumpulkan dalam dua konteks perawatan kesehatan yang
Abstrak	berbeda, perawatan primer versus perawatan intensif.
	menunjukkan bahwa PopKLD mempertahankan fitur fisiologis
	yang diketahui dalam data yang hilang ketika meringkas data
	menggunakan ringkasan data laboratorium yang lebih umum
	seperti mean dan standar deviasi. menemukan bahwa ringkasan
	data laboratorium PopKLD secara substansial lebih baik dalam
	memprediksi keadaan penyakit. Algoritma PopKLD atau
U	PopKLD-CAT tidak dimaksudkan untuk digunakan sebagai
MAE	algoritma fenotip, tetapi menggunakan tugas fenotipe untuk
IVIE	menunjukkan informasi apa yang dapat diperoleh saat
	menggunakan ringkasan data laboratorium yang lebih
	informatif.
	Makalah ini semua nilai laboratorium dikumpulkan di klinik
	AIM dengan pengecualian satu, glukosa ICU. Glukosa terbatas
	ICU termasuk dalam upaya untuk mengisolasi data yang
	dihasilkan terutama karena fisiologi dan dengan bias proses
Hasil	perawatan kesehatan yang relatif minimal karena konteks
	pengumpulan. Pertama, tidak ada aturan umum yang jelas untuk
	memilih distribusi terbaik atau paling representatif untuk semua
	tipe data laboratorium. Semua model parametrik memiliki
	variabel laboratorium yang direpresentasikan secara buruk
	karena dicirikan oleh perbedaan-KL yang relatif besar

sementara masih berada di antara yang terbaik untuk mewakili variabel laboratorium lainnya. Kedua, ada keragaman dalam berapa banyak model yang dapat memodelkan data laboratorium yang masuk akal. Beberapa jenis laboratorium memiliki pemenang yang jelas di antara model, e. Karena itu, dengan nilai-nilai menganggap normalitas laboratorium umumnya bukan ide yang baik. Selain karena itu. penyimpangan dari prediksi entropi maksimum, sebagian besar data variabel laboratorium memiliki informasi lebih banyak daripada yang terkandung dalam mean dan varians saja. Keempat, seringkali ketika pengukuran laboratorium dimodelkan dengan baik oleh distribusi normal, mereka juga dimodelkan dengan baik oleh beberapa model berparameter lainnya. Ketika data EHR tidak dipengaruhi oleh konteks pengumpulan atau proses perawatan kesehatan lainnya, mereka harus mewakili fisiologi pasien. Dalam pengaturan ini, PopKLD harus memilih distribusi yang mempertahankan fisiologis. Untuk menguji ini mengevaluasi algoritma PopKLD dalam dua konteks pengumpulan data. Pertama menerapkan PopKLD untuk data glukosa yang dikumpulkan di ICU, sumber data konteks tunggal. berhipotesis bahwa data ICU mewakili sebagian besar fisiologi karena pengukuran seperti glukosa dalam ICU dikumpulkan sebagian besar independen dari keadaan pasien dibandingkan dengan konteks pengumpulan data EHR lainnya. Kedua, gunakan PopKLD untuk glukosa dari EHR terbatas pada pasien yang mengunjungi klinik Obat Penyakit Dalam Ambulatory, atau klinik AIM. Data ini mewakili sumber data konteks campuran karena data ini mencakup semua data untuk pasien AIM, termasuk data ICU, tetapi terutama berisi data rawat jalan. berhipotesis bahwa data AIM mewakili campuran fisiologi dan HCP. Dalam kedua konteks menunjukkan bahwa PopKLD menghasilkan ringkasan laboratorium yang menjaga fisiologi. Secara khusus, bahwa untuk glukosa, deviasi rata-rata dan standar terkait linier. Dalam hal data ICU, kita dapat mengevaluasi algoritma PopKLD lebih

ME

	lanjut karena kita dapat membuat prediksi. Distribusi entropi
	maksimum untuk sistem apa pun dengan kendala yang berarti
	dan standar deviasi terkait secara linear adalah distribusi
	gamma. Oleh karena itu, dalam konteks ICU, jika data ICU
	terutama mewakili fisiologi, memperkirakan bahwa algoritma
	PopKLD akan memilih distribusi gamma untuk meringkas
	glukosa terbaik.
	Makalah ini mengembangkan algoritma PopKLD dan PopKLD-
	CAT yang mengakui data laboratorium EHR mentah, kontinyu,
Kesimpulan	berisik, outlier-ridden, bias dan muncul dengan ringkasan
	dimensi rendah yang kurang didominasi oleh bias proses
	perawatan kesehatan, pencilan, dan kompleksitas lainnya, siap
	digunakan oleh teknologi pembelajaran mesin saat ini.
Penulis	D.J. Albersa, N. Elhadada, J. Claassenb, R. Perottec, A.
	Goldsteina dan G. Hripcsaka.
Nama jurnal, Volume, Nomor, Tahun	Elsevier, 78, 87-101, 2018.
	Penulisan Artikel ini secara keseluruhann nya adalah baik dan
	mudah dipahami. Ulasan artikel dari Penelitian ini untuk
	mengembangkan algoritma PopKLD dan PopKLD-CAT yang
	mengakui data laboratorium EHR mentah, kontinyu, berisik,
U	outlier-ridden, bias dan muncul dengan ringkasan dimensi
ME	rendah yang kurang didominasi oleh bias proses perawatan kesehatan, pencilan, dan kompleksitas lainnya, siap digunakan
	oleh teknologi pembelajaran mesin saat ini. Mempelajari
	pertanyaan tentang bagaimana untuk mewakili atau meringkas
Ulasan artikel	data laboratorium mentah yang diambil dari catatan kesehatan
	elektronik menggunakan pemilihan model parametrik untuk
	mengurangi atau mengatasi bias yang diinduksi melalui
	perawatan klinis. Sebelumnya telah ditunjukkan bahwa proses
	perawatan kesehatan, sebagaimana didefinisikan oleh konteks
	pengukuran dan pola pengukuran, dapat mempengaruhi
	bagaimana data EHR didistribusikan secara statistik.
	mengevaluasi metodologi dengan dua cara. Pertama,
	menerapkan metode ini ke data laboratorium yang dikumpulkan
	dalam dua konteks perawatan kesehatan yang berbeda,
	I .

perawatan primer versus perawatan intensif. menunjukkan bahwa PopKLD mempertahankan fitur fisiologis yang diketahui dalam data yang hilang ketika meringkas data menggunakan ringkasan data laboratorium yang lebih umum seperti mean dan menemukan bahwa ringkasan data standar deviasi. laboratorium PopKLD secara substansial lebih baik dalam memprediksi keadaan penyakit. Algoritma PopKLD atau PopKLD-CAT tidak dimaksudkan untuk digunakan sebagai algoritma fenotip, tetapi menggunakan tugas fenotipe untuk menunjukkan informasi apa yang dapat diperoleh saat menggunakan ringkasan data laboratorium yang lebih informatif. Dalam Makalah ini semua nilai laboratorium dikumpulkan di klinik AIM dengan pengecualian satu, glukosa ICU. Glukosa terbatas ICU termasuk dalam upaya untuk mengisolasi data yang dihasilkan terutama karena fisiologi dan dengan bias proses perawatan kesehatan yang relatif minimal karena konteks pengumpulan. Pertama, tidak ada aturan umum yang jelas untuk memilih distribusi terbaik atau paling representatif untuk semua tipe data laboratorium. Semua model memiliki variabel parametrik laboratorium yang direpresentasikan secara buruk karena dicirikan oleh perbedaan-KL yang relatif besar sementara masih berada di antara yang terbaik untuk mewakili variabel laboratorium lainnya. Kedua, ada keragaman dalam berapa banyak model yang dapat memodelkan data laboratorium yang masuk akal. Beberapa jenis laboratorium memiliki pemenang yang jelas di antara model, e. Karena itu, menganggap normalitas dengan nilai-nilai laboratorium umumnya bukan ide yang baik. Selain itu, karena penyimpangan dari prediksi entropi maksimum, sebagian besar data variabel laboratorium memiliki informasi lebih banyak daripada yang terkandung dalam mean dan varians saja. Keempat, seringkali ketika pengukuran laboratorium dimodelkan dengan baik oleh distribusi normal, mereka juga dimodelkan dengan baik oleh beberapa model berparameter lainnya. Ketika data EHR tidak dipengaruhi oleh konteks

pengumpulan atau proses perawatan kesehatan lainnya, mereka harus mewakili fisiologi pasien. Dalam pengaturan ini, PopKLD memilih distribusi yang mempertahankan fisiologis. Untuk menguji ini mengevaluasi algoritma PopKLD dalam dua konteks pengumpulan data. Pertama menerapkan PopKLD untuk data glukosa yang dikumpulkan di ICU, sumber data konteks tunggal. berhipotesis bahwa data ICU mewakili sebagian besar fisiologi karena pengukuran seperti glukosa dalam ICU dikumpulkan sebagian besar independen dari keadaan pasien dibandingkan dengan konteks pengumpulan data EHR lainnya. Kedua, gunakan PopKLD untuk glukosa dari EHR terbatas pada pasien yang mengunjungi klinik Obat Penyakit Dalam Ambulatory, atau klinik AIM. Data ini mewakili sumber data konteks campuran karena data ini mencakup semua data untuk pasien AIM, termasuk data ICU, tetapi terutama berisi data rawat jalan. berhipotesis bahwa data AIM mewakili campuran fisiologi dan HCP. Dalam kedua konteks menunjukkan bahwa PopKLD menghasilkan ringkasan laboratorium yang menjaga fisiologi. Secara khusus, bahwa untuk glukosa, deviasi rata-rata dan standar terkait linier. Dalam hal data ICU, kita dapat mengevaluasi algoritma PopKLD lebih lanjut karena kita dapat membuat prediksi. Distribusi entropi maksimum untuk sistem apa pun dengan kendala yang berarti dan standar deviasi terkait secara linear adalah distribusi gamma. Oleh karena itu, dalam konteks ICU, jika data ICU terutama mewakili fisiologi, memperkirakan bahwa algoritma PopKLD akan memilih distribusi gamma untuk meringkas glukosa terbaik.

- /	M	п	r	-
1	۳			٠,

No	5
Judul Artikel	Pathway analysis using XGBoost classification in Biomedical
	Data.[5]
Topik	Data Mining
Data	gene expression dataset.
Metode / Algoritma	XGBoost Classification

	Mengingat fakta bahwa keberadaan biologis kita berakar pada
	sistem yang kompleks dalam sel kita dengan ribuan interaksi
	antara gen dan metabolit, komunitas riset di bidang biologi dan
	medis telah mengalihkan minat mereka ke pendekatan berbasis
	jaringan. Berdasarkan ini, mengusulkan skema klasifikasi
	berdasarkan XGBoost, algoritma klasifikasi berbasis pohon
Abstrak	baru-baru ini, untuk mendeteksi jalur yang paling diskriminatif
	terkait dengan suatu penyakit. Metode didemonstrasikan pada
	dataset ekspresi gen yang menua yang memberikan bukti bahwa
	XGBoost mengungguli metode klasifikasi terkenal lainnya
	dalam data biologis, sementara hasil yang disediakan oleh
	metode mencakup beberapa jalur lama yang terkait serta yang
	telah lama dilaporkan.
	Awalnya, jalur bawah tanah linier diekstraksi untuk setiap jalur
	yang diinginkan dan diukur dengan menjumlahkan semua skor
	VI dari setiap anggota gen dibagi dengan jumlah semua anggota.
	Sebagai hasilnya, daftar sub-jalur linear untuk setiap jalur
	diekspor dan dievaluasi melalui skor VI. Jalur bawah tanah
Hasil	dengan skor terbaik untuk setiap jalur minat dianalisis lebih
114511	lanjut berdasarkan penjelasan mereka dalam ontologi proses gen
11	biologis dan istilah jalur. menggunakan Fungsional Anotasi
BAE	Alat David, yang menyediakan anotasi bets khas dan analisis
IVIE	pengayaan istilah gen-GO untuk menyoroti istilah yang paling
	relevan, seperti GO dan jalur, yang terkait dengan daftar gen
	yang diberikan.
Kesimpulan	Makalah ini Singkatnya, metode klasifikasi berbasis jalur
	menggunakan algoritma XGBoost untuk menganalisis data
	ekspresi gen dijelaskan. Metode yang diusulkan
	mengidentifikasi jalur penting yang membedakan dua kasus
	yang diteliti, sementara itu mengisolasi jalur bawah tanah yang
	paling penting yang memainkan peran penting dalam seluruh
	topologi jalur, gangguan yang memunculkan penyakit yang
	diteliti.
Penulis	Georgios N. Dimitrakopoulos, Aristidis G. Vrahatis, VassilisPlagianakos, Kyriakos Sgarbas.
Nama jurnal, Volume, Nomor, Tahun	SETN, 9-15, 2018

Ulasan artikel

MEI

Penulisan Artikel ini secara keseluruhann nya adalah baik dan mudah dipahami. Ulasan artikel dari Penelitian ini untuk analisis dan menjelaskan biologi yang mendasari untuk hasil yang tinggi pengukuran molekuler, karena lingkungan interaksi a protein dalam jaringan seluler penting dalam mendefinisikan peran itu protein berperan dalam sistem secara keseluruhan [1]. Analisis Jalur milik keluarga metode Biologi Sistem, yang bertujuan untuk membuat a model berbasis jaringan seluler yang mengekstraksi pengetahuan dari data diproduksi oleh teknologi pengurutan throughput tinggi. Lebar luas pendekatan berbasis jalur diterbitkan dalam dekade terakhir menciptakan berbagai pendekatan dan kategori analitik [2-4]. Dalam konteks yang lebih umum, pendekatan berbasis jaringan telah membanjiri komunitas penelitian di bidang Biologi Sistem dan Sistem Kedokteran, karena mereka mencakup banyak hal yang kompleks sistem di mana banyak saling ketergantungan di antara ribuan gen dan metabolit terjadi pada berbagai tingkat dan skala, sedangkan mereka interpretasi alami terkait erat dengan biologis kita keberadaan [5]. Diberikan pula fakta bahwa suatu penyakit jarang a konsekuensi dari kelainan pada satu gen, tetapi itu mencerminkan gangguan jaringan intraseluler dan antar sel yang kompleks yang menghubungkan jaringan dan sistem organ, itu dibenarkan pergeseran komunitas riset untuk menggunakan alat tingkat sistem dan tingkat jaringan untuk mengungkap kompleksitas mekanisme dan penyakit biologis [6]. Sebagai cosequence, bidang penelitian baru, yang dikenal sebagai Jaringan Medicine [7], yang merupakan kombinasi dari System Medicine dan Bidang Ilmu Jaringan, mengikuti perspektif ini. Itu masih di dalamnya bayi yang bertujuan untuk mengatasi kompleksitas penyakit secara holistik, dengan lebih terintegrasi. Makalah ini Singkatnya, metode klasifikasi berbasis jalur menggunakan algoritma XGBoost untuk menganalisis data ekspresi gen dijelaskan. Metode yang diusulkan mengidentifikasi jalur penting yang membedakan dua kasus yang diteliti, sementara itu mengisolasi jalur bawah tanah

yang paling penting yang memainkan peran penting dalam seluruh topologi jalur, gangguan yang memunculkan penyakit yang diteliti. Mengingat fakta bahwa keberadaan biologis kita berakar pada sistem yang kompleks dalam sel kita dengan ribuan interaksi antara gen dan metabolit, komunitas riset di bidang biologi dan medis telah mengalihkan minat mereka ke pendekatan berbasis jaringan. Berdasarkan ini, mengusulkan skema klasifikasi berdasarkan XGBoost, algoritma klasifikasi berbasis pohon baru-baru ini, untuk mendeteksi jalur yang paling diskriminatif terkait dengan suatu penyakit. Metode didemonstrasikan pada dataset ekspresi gen yang menua yang memberikan bukti bahwa XGBoost mengungguli metode klasifikasi terkenal lainnya dalam data biologis, sementara hasil yang disediakan oleh metode mencakup beberapa jalur lama yang terkait serta yang telah lama dilaporkan. Awalnya, jalur bawah tanah linier diekstraksi untuk setiap jalur yang diinginkan dan diukur dengan menjumlahkan semua skor VI dari setiap anggota gen dibagi dengan jumlah semua anggota. Sebagai hasilnya, daftar sub-jalur linear untuk setiap jalur diekspor dan dievaluasi melalui skor VI. Jalur bawah tanah dengan skor terbaik untuk setiap jalur minat dianalisis lebih lanjut berdasarkan penjelasan mereka dalam ontologi proses gen biologis dan istilah jalur. menggunakan Fungsional Anotasi Alat David, yang menyediakan anotasi bets khas dan analisis pengayaan istilah gen-GO untuk menyoroti istilah yang paling relevan, seperti GO dan jalur, yang terkait dengan daftar gen yang diberikan.

No	6
	How context affects implementation of the Primary Health Care
Judul Artikel	approach: an analysis of what happened to primary health
	centres in India.[6]
Topik	Data Mining
Data	-

Metode / Algoritma	Examining macro contexts, Examining the micro context dan
Wetode / Algoritma	Interpreting the macro and micro contexts together.
	Dalam makalah ini, menjelaskan tantangan yang diajukan oleh
	konteks untuk penerapan pendekatan Perawatan Kesehatan
	Utama, menggunakan contoh pusat kesehatan primer di India.
	Untuk memeriksa konteks mikro, bekerja dengan data kualitatif
	empiris dari sebuah distrik pedesaan di Maharashtra —
	dikumpulkan melalui 12 diskusi kelompok fokus masyarakat,
	12 wawancara pasien dan 34 wawancara dengan staf sistem
Abstrak	kesehatan. Pada tingkat mikro, penyediaan layanan di pusat
	kesehatan primer dipengaruhi oleh ketidaktertarikan dokter
	dalam peran perawatan primer dan konteks kelembagaan yang
	mempromosikan keengganan risiko dan mengabaikan
	perawatan rawat jalan. Makalah ini menyoroti beberapa
	kompleksitas kontekstual dari penerapan PHC -
	mempertimbangkan masalah tingkat makro dan mikro.
	Layanan Kesehatan di Inggris. Dalam rencana jangka pendek
	komite, satu pusat kesehatan primer divisualisasikan untuk
	setiap 40.000 penduduk. Setiap pusat kesehatan primer dalam
	program jangka pendek adalah memiliki 2 dokter, 4 Perawat
	Kesehatan Masyarakat, 4 Bidan, 4 Dais terlatih. Ini
Hasil	membenarkan pengeluaran besar untuk membangun sistem
ME	seperti itu sebagai 'investasi yang baik' untuk kemajuan negara.
	Pusat kesehatan primer adalah bagian dari cetak biru asli yang
	dimaksudkan sebagai akses pertama fasilitas kesehatan, dalam
	sistem tiga tingkat.
	Makalah ini menyoroti beberapa kontekstual kompleksitas
Kesimpulan	penerapan PHC — mempertimbangkan makro (berkaitan
	dengan ideologi dan prioritas fiskal) dan mikro (berkaitan
	dengan perilaku sehari-hari dan praktik aktor) masalah level.
	Ketika kita berkomitmen kembali kepada Alma-Ata, kita harus
	berhati-hati dari adopsi intervensi upacara, yang terlihat seperti
	PHC — tetapi tidak bisa mewujudkan cita-citanya.
Penulis	Sudha Ramani, Muthusamy Siva, Lucy Gilson.
Nama jurnal, Volume, Nomor, Tahun	BMJ Glob Health, 10, 136, 2020.

Penulisan Artikel ini secara keseluruhann nya adalah baik dan mudah dipahami. Ulasan artikel dari Penelitian ini untuk menjelaskan tantangan yang diajukan oleh konteks untuk Utama, penerapan pendekatan Perawatan Kesehatan menggunakan contoh pusat kesehatan primer di India. Untuk memeriksa konteks mikro, bekerja dengan data kualitatif empiris dari sebuah distrik pedesaan di Maharashtra dikumpulkan melalui 12 diskusi kelompok fokus masyarakat, 12 wawancara pasien dan 34 wawancara dengan staf sistem kesehatan. Pada tingkat mikro, penyediaan layanan di pusat kesehatan primer dipengaruhi oleh ketidaktertarikan dokter dalam peran perawatan primer dan konteks kelembagaan yang mempromosikan keengganan risiko dan mengabaikan Ulasan artikel perawatan rawat jalan. Makalah ini menyoroti beberapa kompleksitas kontekstual dari penerapan **PHC** mempertimbangkan masalah tingkat makro dan mikro. Makalah ini menyoroti beberapa kontekstual kompleksitas penerapan PHC — mempertimbangkan makro (berkaitan dengan ideologi dan prioritas fiskal) dan mikro (berkaitan dengan perilaku sehari-hari dan praktik aktor) masalah level. Ketika kita berkomitmen kembali kepada Alma-Ata, kita harus berhati-hati dari adopsi intervensi upacara, yang terlihat seperti PHC — tetapi tidak bisa mewujudkan cita-citanya. Makalah ini menyoroti beberapa kontekstual kompleksitas penerapan PHC — mempertimbangkan makro (berkaitan dengan ideologi dan prioritas fiskal) dan mikro (berkaitan dengan perilaku seharihari dan praktik aktor) masalah level.

No	7
Judul Artikel	Predicting opioid dependence from electronic health records
	with machine learning.[7]
Topik	Data Mining
Data	MSMC-EHR
Metode / Algoritma	Machine Learning

Abstrak Hasil

Makalah ini melatih model pembelajaran mesin untuk mengklasifikasikan pasien dengan kemungkinan memiliki diagnosis ketergantungan zat menggunakan data EHR dari pasien yang didiagnosis dengan ketergantungan zat, bersama dengan pasien kontrol yang tidak memiliki riwayat kondisi terkait zat, disesuaikan dengan usia, jenis kelamin, dan status HIV, hepatitis C, dan penyakit sel sabit. Model prediktif dapat digunakan untuk mengidentifikasi pasien yang berisiko mengembangkan ketergantungan, risiko overdosis, dan pasien yang mencari opioid yang melaporkan gejala lain dalam kunjungan mereka ke ruang gawat darurat.

Dari penelitian ini mempertahankan 11.573 kasus yang diagnosis ketergantungan zat pertama kali dibuat pada usia 20 tahun atau lebih. Usia rata-rata pasien ini pada diagnosis ketergantungan zat pertama mereka adalah 45,6 tahun, dengan pasien termuda berusia 20 tahun, dan yang tertua 89,4 tahun. 9528 dari pasien ini memiliki 1.525.293 rekaman tes laboratorium dan pengukuran tanda-tanda vital selama periode 10 hari sebelum dan 10 hari setelah diagnosis ketergantungan zat. Populasi kasus terakhir diperoleh setelah mengeluarkan pasien dengan kurang dari 17 tes laboratorium dan tanda-tanda vital, meninggalkan 7797 pasien. Dari 880.605 pasien yang memiliki setidaknya satu resep dalam MSMC-EHR, 356.734 pasien memiliki setidaknya satu resep opioid. Median adalah satu hari, kemungkinan karena pasien yang diresepkan metadon untuk pengobatan ketergantungan opioid mereka sebelumnya. Rata-rata 26,7 resep opioid diamati untuk pasien dengan diagnosis gangguan penggunaan opioid, dan rata-rata 5,27 untuk pasien tanpa diagnosis gangguan penggunaan opioid. Dalam hal kasus dan populasi kontrol yang cocok, persentase serupa memiliki resep opioid non-metadon sebelumnya. Namun, untuk pasien yang memiliki resep opioid sebelumnya, pasien kasus memiliki rata-rata 13,07 resep, dan kontrol memiliki rata-rata 4,25 resep. Melihat 100 hari sebelum diagnosis ketergantungan zat, peringkat skor nyeri secara signifikan meningkat dalam

kasus dibandingkan dengan kontrol pada ~ 80 hari sebelum diagnosis. Peningkatan sebelumnya pada skor nyeri ini dapat menunjukkan waktu khas dari resep opioid awal hingga diagnosis ketergantungan zat. Namun, ditetapkan bahwa perkembangan dari resep opioid ke diagnosis ketergantungan umumnya memakan waktu berbulan-bulan hingga bertahuntahun. Kemungkinan lain, skor nyeri awal yang tinggi menunjukkan toleransi opioid, dan ambang batas nyeri yang berkurang.

Kesimpulan

MF

Melalui menganalisis catatan kesehatan dari ratusan ribu orang di MSMC-EHR dengan kerangka pembelajaran mesin, selanjutnya meneliti pasien ketergantungan opioid dengan menggunakan pengukuran fisiologis. menemukan bahwa pasien yang tergantung opioid memiliki WBC dan gangguan pernapasan yang secara signifikan lebih tinggi. Pasien yang tergantung opioid juga biasanya kekurangan gizi yang ditandai dengan RCDW dan albumin darah yang rendah dibandingkan dengan kontrol. Analisis fenotip klinis menemukan bahwa pasien yang tergantung opioid lebih mungkin untuk menderita gangguan kejiwaan dan menunjukkan gejala yang berhubungan dengan nyeri. Model prediktif mungkin memiliki kegunaan untuk mengidentifikasi pasien yang berisiko mengembangkan ketergantungan, risiko overdosis, dan mencari pasien opioid bahwa Tabel 5 Top 10 prosedur yang diwakili secara berbeda selama 5 tahun sebelum diagnosis penyalahgunaan zat Prosedur Odds ratio p-value Kelompok lain terapi 19.8 1.23E-69 Wawancara & Evaluasi NEC 11.578 4.06E-42 Penentuan Mental Psikiatri 10.597 1.24E-29 Psikoterapi verbal eksplorator 10.371 2.41E-57 Wawancara & evaluasi singkat 6.224 9.00E-201 Wawancara terbatas / evaluasi 5.804 2.71E-279 Wawancara & evaluasi NOS 5.745 6.16E-102 Wawancara / evaluasi komprehensif 5.065 1.71E-147 Konseling lainnya 4.3 3.93E-36 Pemantauan janin lainnya 0.218 1.14E-30 Ellis et al. Perlu dicatat bahwa menandai pasien dengan kode ICD ketergantungan opioid.

Penulis	Randall J. Ellis, Zichen Wang, Nicholas Genes2 dan Avi Ma'ayan.
Nama jurnal, Volume, Nomor, Tahun	BIO Data Mining, 12, 3, 2019
	Penulisan Artikel ini secara keseluruhann nya adalah baik dan
	mudah dipahami. Ulasan artikel dari Penelitian ini untuk melatih
	model pembelajaran mesin untuk mengklasifikasikan pasien
	dengan kemungkinan memiliki diagnosis ketergantungan zat
	menggunakan data EHR dari pasien yang didiagnosis dengan
	ketergantungan zat, bersama dengan pasien kontrol yang tidak
	memiliki riwayat kondisi terkait zat, disesuaikan dengan usia,
	jenis kelamin, dan status HIV, hepatitis C, dan penyakit sel sabit.
	Model prediktif dapat digunakan untuk mengidentifikasi pasien
	yang berisiko mengembangkan ketergantungan, risiko
	overdosis, dan pasien yang mencari opioid yang melaporkan
	gejala lain dalam kunjungan mereka ke ruang gawat darurat.
	Dari penelitian ini mempertahankan 11.573 kasus yang
	diagnosis ketergantungan zat pertama kali dibuat pada usia 20
	tahun atau lebih. Usia rata-rata pasien ini pada diagnosis
	ketergantungan zat pertama mereka adalah 45,6 tahun, dengan
Ulasan artikel	pasien termuda berusia 20 tahun, dan yang tertua 89,4 tahun.
	9528 dari pasien ini memiliki 1.525.293 rekaman tes laboratorium dan pengukuran tanda-tanda vital selama periode
U	10 hari sebelum dan 10 hari setelah diagnosis ketergantungan
ME	zat. Populasi kasus terakhir diperoleh setelah mengeluarkan
	pasien dengan kurang dari 17 tes laboratorium dan tanda-tanda
	vital, meninggalkan 7797 pasien. Dari 880.605 pasien yang
	memiliki setidaknya satu resep dalam MSMC-EHR, 356.734
	pasien memiliki setidaknya satu resep opioid. Median adalah
	satu hari, kemungkinan karena pasien yang diresepkan metadon
	untuk pengobatan ketergantungan opioid mereka sebelumnya.
	Rata-rata 26,7 resep opioid diamati untuk pasien dengan
	diagnosis gangguan penggunaan opioid, dan rata-rata 5,27 untuk
	pasien tanpa diagnosis gangguan penggunaan opioid. Dalam hal
	kasus dan populasi kontrol yang cocok, persentase serupa
	memiliki resep opioid non-metadon sebelumnya. Namun, untuk
	pasien yang memiliki resep opioid sebelumnya, pasien kasus

memiliki rata-rata 13,07 resep, dan kontrol memiliki rata-rata 4,25 resep. Melihat 100 hari sebelum diagnosis ketergantungan zat, peringkat skor nyeri secara signifikan meningkat dalam kasus dibandingkan dengan kontrol pada ~ 80 hari sebelum diagnosis. Peningkatan sebelumnya pada skor nyeri ini dapat menunjukkan waktu khas dari resep opioid awal hingga diagnosis ketergantungan zat. Namun, ditetapkan bahwa perkembangan dari resep opioid ke diagnosis ketergantungan umumnya memakan waktu berbulan-bulan hingga bertahuntahun. Kemungkinan lain, skor nyeri awal yang tinggi menunjukkan toleransi opioid, dan ambang batas nyeri yang berkurang. Melalui me nganalisis catatan kesehatan dari ratusan ribu orang di MSMC-EHR dengan kerangka pembelajaran mesin, selanjutnya meneliti pasien ketergantungan opioid dengan menggunakan pengukuran fisiologis. menemukan bahwa pasien yang tergantung opioid memiliki WBC dan gangguan pernapasan yang secara signifikan lebih tinggi. Pasien yang tergantung opioid juga biasanya kekurangan gizi yang ditandai dengan RCDW dan albumin darah yang rendah dibandingkan dengan kontrol. Analisis fenotip klinis menemukan bahwa pasien yang tergantung opioid lebih mungkin untuk menderita gangguan kejiwaan dan menunjukkan gejala yang berhubungan dengan nyeri. Model prediktif mungkin memiliki kegunaan untuk mengidentifikasi pasien yang berisiko mengembangkan ketergantungan, risiko overdosis, dan mencari pasien opioid bahwa Tabel 5 Top 10 prosedur yang diwakili secara berbeda selama 5 tahun sebelum diagnosis penyalahgunaan zat Prosedur Odds ratio p-value Kelompok lain terapi 19.8 1.23E-69 Wawancara & Evaluasi NEC 11.578 4.06E-42 Penentuan Mental Psikiatri 10.597 1.24E-29 Psikoterapi verbal eksplorator 10.371 2.41E-57 Wawancara & evaluasi singkat 6.224 9.00E-201 Wawancara terbatas / evaluasi 5.804 2.71E-279 Wawancara & evaluasi NOS 5.745 6.16E-102 Wawancara / evaluasi komprehensif 5.065 1.71E-147 Konseling lainnya 4.3 3.93E-36 Pemantauan janin

lainnya 0.218 1.14E-30 Ellis et al. Perlu dicatat bahwa menandai
pasien dengan kode ICD ketergantungan opioid.

No	8
Judul Artikel	Machine learning to predict rapid progression of carotid atherosclerosis in patients with impaired glucose tolerance.[8]
Topik	Data Mining
Data	ACT NOW dataset
Data	Naive Bayes, Multilayer Perceptron dan Random Forest
Metode / Algoritma	Methods.
	Dalam makalah ini, menyelidiki faktor-faktor penting yang
	mempengaruhi prediksi, menggunakan beberapa metode
	pembelajaran mesin, perkembangan cepat ketebalan intima-
	media karotid pada peserta toleransi glukosa yang terganggu.
	Dalam studi Actos Now for Prevention of Diabetes, 382 peserta
	dengan IGT menjalani evaluasi ultrasonografi intima-media
	karotid pada awal dan pada 15-18 bulan, dan dibagi menjadi
	pelanjut cepat dan pelambat tidak cepat. Perbandingan metode
A 1	dan faktor dilakukan dengan menggunakan area di bawah
Abstrak	analisis kurva karakteristik operasi penerima dan skor Brier.
	Hasil eksperimen menunjukkan bahwa metode pembelajaran
	yang diusulkan bekerja dengan baik dalam mengidentifikasi atau memprediksi RP. Di antara metode, kinerja Naïve Bayes
	adalah yang terbaik dibandingkan dengan perceptron multilayer
	dan hutan acak. Dengan berurusan dengan data multi-modal,
	metode pembelajaran yang diusulkan menunjukkan efektivitas
	dalam memprediksi prediabetik yang berisiko untuk
	perkembangan aterosklerosis yang cepat.
Hasil	Dari makalah ini ada perbedaan yang signifikan dalam situs
	pendaftaran, proporsi dengan ras Hispanik, mikroalbumin urin,
	kreatinin plasma dan serum inhibitor aktivator plasminogen
	serum-1 antara RP dan NRP. Secara khusus, data secara acak
	dibagi menjadi satu set pelatihan yang datanya digunakan untuk
	membangun model, dan set tes yang datanya digunakan untuk
	memvalidasi model yang dibangun. Sementara masing-masing

	metode memiliki kinerja yang baik secara keseluruhan, Naïve
	Bayes dengan pemilihan fitur mencapai kinerja terbaik, yang
	menghasilkan klasifikasi yang benar pada 340 dari 382 subjek,
	AUC 0,797 dan skor Brier 0,086. Selain itu, menyelidiki
	efektivitas memperkenalkan metode pemilihan fitur dalam
	kerangka analisis data. Hasil percobaan menunjukkan bahwa
	ketiga metode mencapai hasil yang jauh lebih baik dengan
	menggunakan pemilihan fitur, dan metode Naïve Bayes
	mencapai AUC sebesar 0,797 dan 0,745.
	Metode Naïve Bayes menunjukkan kinerja yang unggul di atas
Kesimpulan	multilayer perceptron dan metode hutan acak dan pemilihan
	fitur meningkatkan kinerja prediksi.
Penulis	Xia Hu, Peter D. Reaven, Aramesh Saremi, Ninghao Liu,
	Mohammad Ali Abbasi, Huan Liu dan Raymond Q. Migrino
Nama jurnal, Volume, Nomor, Tahun	EUARASIP Journal on Bioinformatics and Systems Biology,
	14, 2016.
	Penulisan Artikel ini secara keseluruhannya adalah baik dan
	mudah dipahami. Ulasan artikel dari Penelitian ini untuk
	menyelidiki faktor-faktor penting yang mempengaruhi prediksi,
	menggunakan beberapa metode pembelajaran mesin,
	perkembangan cepat ketebalan intima-media karotid pada
U	peserta toleransi glukosa yang terganggu. Dalam studi Actos
ME	Now for Prevention of Diabetes, 382 peserta dengan IGT menjalani evaluasi ultrasonografi intima-media karotid pada
	awal dan pada 15-18 bulan, dan dibagi menjadi pelanjut cepat
	dan pelambat tidak cepat. Perbandingan metode dan faktor
Ulasan artikel	dilakukan dengan menggunakan area di bawah analisis kurva
	karakteristik operasi penerima dan skor Brier. Hasil eksperimen
	menunjukkan bahwa metode pembelajaran yang diusulkan
	bekerja dengan baik dalam mengidentifikasi atau memprediksi
	RP. Di antara metode, kinerja Naïve Bayes adalah yang terbaik
	dibandingkan dengan perceptron multilayer dan hutan acak.
	Dengan berurusan dengan data multi-modal, metode
	pembelajaran yang diusulkan menunjukkan efektivitas dalam
	memprediksi prediabetik yang berisiko untuk perkembangan
	aterosklerosis yang cepat. makalah ini ada perbedaan yang

signifikan dalam situs pendaftaran, proporsi dengan ras Hispanik, mikroalbumin urin, kreatinin plasma dan serum inhibitor aktivator plasminogen serum-1 antara RP dan NRP. Secara khusus, data secara acak dibagi menjadi satu set pelatihan yang datanya digunakan untuk membangun model, dan set tes yang datanya digunakan untuk memvalidasi model yang dibangun. Sementara masing-masing metode memiliki kinerja yang baik secara keseluruhan, Naïve Bayes dengan pemilihan fitur mencapai kinerja terbaik, yang menghasilkan klasifikasi yang benar pada 340 dari 382 subjek, AUC 0,797 dan skor Brier 0,086. Selain itu, menyelidiki efektivitas memperkenalkan metode pemilihan fitur dalam kerangka analisis data. Hasil percobaan menunjukkan bahwa ketiga metode mencapai hasil yang jauh lebih baik dengan menggunakan pemilihan fitur, dan metode Naïve Bayes mencapai AUC sebesar 0,797 dan 0,745. Metode Naïve Bayes menunjukkan kinerja yang unggul di atas multilayer perceptron dan metode hutan acak dan pemilihan fitur meningkatkan kinerja prediksi.

No	9 I V E R S I T A S
Judul Artikel ME	Using a machine learning approach to predict mortality in critically ill influenza patients: a cross-sectional retrospective multicentre study in Taiwan.[9]
Topik	Data Mining
Data	-
Metode / Algoritma	XGBoost, Decision Tree.
Abstrak	Partisipan Sebanyak 336 pasien yang membutuhkan penerimaan
	ICU untuk influenza yang terbukti secara virologi di delapan
	rumah sakit selama epidemi influenza antara Oktober 2015 dan
	Maret 2016. Hasil Kumpulan data berisi 76 fitur dari 336 pasien
	dengan influenza berat. Tingkat keparahannya tampaknya
	tinggi, seperti yang ditunjukkan oleh skor Fisiologi Akut dan
	Kesehatan Kronis II yang tinggi dan skor indeks keparahan
	pneumonia. Area model XGBoost di bawah kurva mengungguli

	RF dan LR untuk memprediksi mortalitas 30 hari. Untuk
	memberi dokter pemahaman intuitif tentang eksploitasi fitur,
	membuat stratifikasi fitur berdasarkan domain klinis.
	Kepentingan fitur kumulatif dalam domain keseimbangan
	cairan, domain ventilasi, domain data laboratorium, domain
	demografi dan gejala, domain manajemen dan domain skor
	keparahan masing-masing adalah 0,253, 0,113, 0,177, 0,140,
	0,140, 0,152 dan 0,165. selanjutnya menggunakan plot SHAP
	untuk menggambarkan hubungan antara fitur dan mortalitas 30
	hari pada pasien influenza yang sakit kritis.
	Sebanyak 336 pasien dengan influenza yang terbukti secara
	virologi terdaftar, dan 76 variabel dengan data lengkap dari 336
77 . 13	pasien ini dianalisis. Usia rata-rata pasien adalah 61 tahun, dan
Hasil	62,8% adalah laki-laki. Untuk menyelidiki faktor-faktor yang
	terkait dengan kematian di rumah sakit, membagi 336 subyek
	menjadi kelompok yang selamat dan tidak selamat berdasarkan
	mortalitas pada 30 hari.
	menggunakan fitur-fitur penting berbasis domain dan plot
	SHAP untuk realisasi yang divisualisasikan dan pendekatan ini
	setidaknya harus mengurangi sebagian kekhawatiran masalah
Kesimpulan	kotak hitam. Penelitian prospektif di masa depan dijamin untuk
DAE	memvalidasi model yang diusulkan dan menerjemahkan
IVIE	keunggulan model ML ke dalam hasil pasien yang ditingkatkan
	melalui DSS otomatis dan real-time.
	Chien-An Hu, Chia-Ming Chen, Yen-Chun Fang, Shinn-Jye
Penulis	Liang, Hao-Chien Wang, Wen-Feng Fang, Chau-Chyun Sheu, Wann-Cherng Perng, Kuang-Yao Yang, Kuo-Chin Kao, Chieh-
	Liang Wu, Chwei-Shyong Tsai, Ming-Yen Lin dan Wen-Cheng
Nama jurnal, Volume, Nomor, Tahun	Chao. BMJ Open, 10, 1136, 2020.
Nama jurnai, volume, Nomor, Tanun	• • • • • • • • • • • • • • • • • • • •
	Penulisan Artikel ini secara keseluruhannya adalah baik dan
Ulasan artikel	mudah dipahami. Ulasan artikel dari Penelitian ini untuk
	membutuhkan penerimaan ICU untuk influenza yang terbukti
	secara virologi di delapan rumah sakit selama epidemi influenza
	antara Oktober 2015 dan Maret 2016. Hasil Kumpulan data
	berisi 76 fitur dari 336 pasien dengan influenza berat. Tingkat
	keparahannya tampaknya tinggi, seperti yang ditunjukkan oleh

skor Fisiologi Akut dan Kesehatan Kronis II yang tinggi dan skor indeks keparahan pneumonia. Area model XGBoost di bawah kurva mengungguli RF dan LR untuk memprediksi mortalitas 30 hari. Untuk memberi dokter pemahaman intuitif tentang eksploitasi fitur, membuat stratifikasi fitur berdasarkan domain klinis. Kepentingan fitur kumulatif dalam domain keseimbangan cairan, domain ventilasi, domain data laboratorium, domain demografi dan gejala, domain manajemen dan domain skor keparahan masing-masing adalah 0,253, 0,113, 0,177, 0,140, 0,140, 0,152 dan 0,165. selanjutnya menggunakan plot SHAP untuk menggambarkan hubungan antara fitur dan mortalitas 30 hari pada pasien influenza yang sakit kritis. Sebanyak 336 pasien dengan influenza yang terbukti secara virologi terdaftar, dan 76 variabel dengan data lengkap dari 336 pasien ini dianalisis. Usia rata-rata pasien adalah 61 tahun, dan 62,8% adalah laki-laki. Untuk menyelidiki faktor-faktor yang terkait dengan kematian di rumah sakit, membagi 336 subyek menjadi kelompok yang selamat dan tidak selamat berdasarkan mortalitas pada 30 hari. Dengan menggunakan fitur-fitur penting berbasis domain dan plot SHAP untuk realisasi yang divisualisasikan dan pendekatan ini setidaknya harus mengurangi sebagian kekhawatiran masalah kotak hitam. Penelitian prospektif di masa depan dijamin untuk memvalidasi model yang diusulkan dan menerjemahkan keunggulan model ML ke dalam hasil pasien yang ditingkatkan melalui DSS otomatis dan real-time.

No	10
Judul Artikel	Diagnosis of Cervical cancer using CLAHE and SGLDM on
	RGB Pap smear Images through ANN.[10]
Topik	Data Mining
Data	Management and Decision Engineering Laboratory (MDE-
	LAB) database.

	SGLDM- Spatial Gray Level Difference Method, RDM- Run
Metode / Algoritma	Difference Method, LBP- Local Binary Pattern dan HOG-
	Histogram of Oriented Gradients.
	Dalam makalah ini, teknik yang diusulkan digunakan untuk
	meningkatkan gambar Pap smear dengan membandingkan
	Histogram Equalization dalam algoritma Contrast Stretching,
	Transformasi Hukum Daya untuk Koreksi Gamma, Koreksi
Abstrak	Shading, Kontras Terbatas Adaptive Histogram Equalization.
Austrak	Klasifikasi JST digunakan untuk setiap algoritma ekstraksi fitur
	untuk mengevaluasi tingkat akurasi. Dengan demikian, CLAHE
	mencapai hasil yang baik untuk peningkatan dan algoritma
	ekstraksi fitur SGLDM mencapai akurasi 93% menggunakan
	ANN.
	Pada fase pertama membandingkan tiga algoritma peningkatan
	transformasi Power law untuk koreksi gamma, Contrast
	stretching dan Contrast Limited Adaptive Histogram
	Equalization untuk mencapai penilaian kualitas. Dengan
	demikian, CLAHE akan mempertahankan kualitas gambar yang
	baik dalam Pra-pemrosesan. Ada 13 fitur yang telah diekstraksi
	dari setiap algoritma ekstraksi fitur menggunakan Enhanced
	CLAHE Pap smear image. SGLDM memberikan ekstraksi fitur
Hasil N/E	yang lebih baik dan akurasi 93,30% yang diperoleh
IVIE	dibandingkan dengan algoritma dan klasifikasi lain yang
	dilakukan menggunakan Neural Network. Operator LBP
	bekerja dengan delapan tetangga piksel, menggunakan nilai
	piksel tengah sebagai ambang. Nilai ambang batas adalah 90
	telah diambil dari gambar CLAHE yang diusulkan. Penggunaan
	dengan set Enhanced CLAHE Pap smear Gambar telah
	diekstraksi dan dimuat dalam Neural Network dan melatih
	jaringan menggunakan propagasi gradien konjugasi skala
	belakang.
Kesimpulan	Gambar Pap smear mikroskopis kanker serviks untuk
	menentukan fakta sebenarnya dari keadaan kanker, yang
	membantu dokter untuk mengambil keputusan yang tepat dan
	dapat memberikan perawatan yang tepat kepada pasien

	sebelumnya. Dalam bidang medis sulit untuk mendeteksi kanker
	serviks pada gambar pap karena nuklei berukuran sangat kecil.
	Pada fase kedua, digunakan empat algoritma ekstraksi fitur
	untuk mengekstraksi fitur dari gambar CLAHE Pap smear yang
	diusulkan. SGLDM adalah ekstraksi fitur terbaik untuk Gambar
	Pap mikroskopis jika dibandingkan dengan LBP, RDM, HOG
	dan mencapai akurasi 93,30% menggunakan matriks
	kebingungan.
Penulis	S. Jaya dan M. Latha.
Nama jumal Valuma Naman Ta	International Journal of Innovative Technology and Exploring
Nama jurnal, Volume, Nomor, Ta	Engineering (IJITEE), 9, 1, 2019.
	Penulisan Artikel ini secara keseluruhannya adalah baik dan
	mudah dipahami. Ulasan artikel dari Penelitian ini untuk
	meningkatkan gambar Pap smear dengan membandingkan
	Histogram Equalization dalam algoritma Contrast Stretching,
	Transformasi Hukum Daya untuk Koreksi Gamma, Koreksi
	Shading, Kontras Terbatas Adaptive Histogram Equalization.
	Klasifikasi JST digunakan untuk setiap algoritma ekstraksi fitur
	untuk mengevaluasi tingkat akurasi. Dengan demikian, CLAHE
	mencapai hasil yang baik untuk peningkatan dan algoritma
	ekstraksi fitur SGLDM mencapai akurasi 93% menggunakan
B.	ANN. Pada penelitian ini fase pertama membandingkan tiga
Ulasan artikel	algoritma peningkatan transformasi Power law untuk koreksi
Olasan artiker	gamma, Contrast stretching dan Contrast Limited Adaptive
	Histogram Equalization untuk mencapai penilaian kualitas.
	Dengan demikian, CLAHE akan mempertahankan kualitas
	gambar yang baik dalam Pra-pemrosesan. Ada 13 fitur yang
	telah diekstraksi dari setiap algoritma ekstraksi fitur
	menggunakan Enhanced CLAHE Pap smear image. SGLDM
	memberikan ekstraksi fitur yang lebih baik dan akurasi 93,30%
	yang diperoleh dibandingkan dengan algoritma dan klasifikasi
	lain yang dilakukan menggunakan Neural Network. Operator
	LBP bekerja dengan delapan tetangga piksel, menggunakan
	nilai piksel tengah sebagai ambang. Nilai ambang batas adalah
	90 telah diambil dari gambar CLAHE yang diusulkan.
1	

Penggunaan dengan set Enhanced CLAHE Pap smear Gambar telah diekstraksi dan dimuat dalam Neural Network dan melatih jaringan menggunakan propagasi gradien konjugasi skala belakang. Gambar Pap smear mikroskopis kanker serviks untuk menentukan fakta sebenarnya dari keadaan kanker, yang membantu dokter untuk mengambil keputusan yang tepat dan dapat memberikan perawatan yang tepat kepada pasien sebelumnya. Dalam bidang medis sulit untuk mendeteksi kanker serviks pada gambar pap karena nuklei berukuran sangat kecil. Pada fase kedua, digunakan empat algoritma ekstraksi fitur untuk mengekstraksi fitur dari gambar CLAHE Pap smear yang diusulkan. SGLDM adalah ekstraksi fitur terbaik untuk Gambar Pap mikroskopis jika dibandingkan dengan LBP, RDM, HOG dan mencapai akurasi 93,30% menggunakan matriks kebingungan.

No	11
Judul Artikel	Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning.[11]
Topik	Data Mining
Data	NIVERSITAS
Metode / Algoritma	Penerapan algoritma pendukung keputusan klinis untuk
Abstrak	pencitraan medis menghadapi tantangan dengan keandalan dan interpretabilitas. Kerangka kerja menggunakan transfer learning, yang melatih jaringan saraf dengan sebagian kecil dari data pendekatan konvensional. Dengan menerapkan pendekatan ini pada kumpulan data gambar tomografi koherensi optik, mendemonstrasikan kinerja yang sebanding dengan kinerja ahli manusia dalam mengklasifikasikan degenerasi makula terkait usia dan edema makula diabetik. juga memberikan diagnosis yang lebih transparan dan dapat ditafsirkan dengan menyoroti daerah yang dikenali oleh jaringan saraf. selanjutnya menunjukkan penerapan umum sistem AI untuk diagnosis pneumonia pediatrik menggunakan gambar X-ray.

Hasil Kesimpulan

Aplikasi utama dari algoritma pembelajaran transfer adalah dalam diagnosis gambar OCT retina. Spectral-domain OCT menggunakan cahaya untuk menangkap penampang retina optik resolusi tinggi in vivo yang dapat dirakit menjadi gambar tiga dimensi volume jaringan retina hidup. Selain itu, hampir 750.000 orang yang berusia 40 atau lebih menderita edema makula diabetik, suatu bentuk retinopati diabetik yang mengancam penglihatan yang melibatkan penumpukan cairan di retina sentral. OCT sangat penting untuk memandu administrasi terapi anti-VEGF dengan memberikan representasi penampang yang jelas dari patologi retina dalam kondisi ini, memungkinkan visualisasi lapisan retina individu, yang tidak mungkin dilakukan dengan pemeriksaan klinis oleh mata manusia atau dengan fotografi fundus berwarna.

Ketika model dilatih dengan jumlah gambar yang jauh lebih kecil, ia mempertahankan kinerja tinggi dalam akurasi, sensitivitas, spesifisitas, dan area di bawah kurva ROC untuk mencapai diagnosis dan rujukan yang benar, dengan demikian menggambarkan kekuatan sistem pembelajaran transfer untuk membuat sangat klasifikasi yang efektif, bahkan dengan set data pelatihan yang sangat terbatas. Meskipun platform AI dilatih dan divalidasi menggunakan sistem pencitraan Heidelberg Spectralis, standar Digital Imaging and Communications in Medicine membuat gambar OCT dari produsen yang berbeda cukup konsisten. Tujuan dari pendekatan pendahuluan ini adalah untuk mengembangkan sistem dan mendemonstrasikan metode yang tepat. Manfaat terbesar dari tes oklusi adalah bahwa ia mengungkapkan wawasan ke dalam keputusan jaringan saraf, yang dikenal sebagai "kotak hitam" tanpa transparansi. Semua area yang mengandung drusen dikenali dengan benar pada semua gambar yang digunakan untuk pengujian, sementara edema makula diabetik dan tes oklusi neovaskularisasi koroid kadang-kadang tidak menunjukkan hal yang menarik. Hal ini kemungkinan karena lesi dan kantong cairan neovaskularisasi koroid dan edema makula diabetik

	kadang-kadang muncul jauh lebih besar daripada jendela oklusi,
	sementara drusen cenderung berukuran lebih kecil.
Panylia	Daniel S. Kermany, Michael Goldbaum, Wenjia Cai, M.
Penulis	Anthony Lewis, Huimin Xia, Kang Zhang.
Nama jurnal, Volume, Nomor, Tahun	Cell, 172, 1122-1131, 2018.
	Penulisan Artikel ini secara keseluruhann nya adalah baik dan
	mudah dipahami. Ulasan artikel dari Penelitian ini untuk
	pencitraan medis menghadapi tantangan dengan keandalan dan
	interpretabilitas. Kerangka kerja menggunakan transfer
	learning, yang melatih jaringan saraf dengan sebagian kecil dari
	data pendekatan konvensional. Dengan menerapkan pendekatan
	ini pada kumpulan data gambar tomografi koherensi optik,
	mendemonstrasikan kinerja yang sebanding dengan kinerja ahli
	manusia dalam mengklasifikasikan degenerasi makula terkait
	usia dan edema makula diabetik. juga memberikan diagnosis
	yang lebih transparan dan dapat ditafsirkan dengan menyoroti
	daerah yang dikenali oleh jaringan saraf. selanjutnya
	menunjukkan penerapan umum sistem AI untuk diagnosis
	pneumonia pediatrik menggunakan gambar X-ray. Ketika
Ulasan artikel	model dilatih dengan jumlah gambar yang jauh lebih kecil, ia mempertahankan kinerja tinggi dalam akurasi, sensitivitas,
U	spesifisitas, dan area di bawah kurva ROC untuk mencapai
MF	diagnosis dan rujukan yang benar, dengan demikian
1 1 1 1	menggambarkan kekuatan sistem pembelajaran transfer untuk
	membuat sangat klasifikasi yang efektif, bahkan dengan set data
	pelatihan yang sangat terbatas. Meskipun platform AI dilatih
	dan divalidasi menggunakan sistem pencitraan Heidelberg
	Spectralis, standar Digital Imaging and Communications in
	Medicine membuat gambar OCT dari produsen yang berbeda
	cukup konsisten. Tujuan dari pendekatan pendahuluan ini
	adalah untuk mengembangkan sistem dan mendemonstrasikan
	metode yang tepat. Manfaat terbesar dari tes oklusi adalah
	bahwa ia mengungkapkan wawasan ke dalam keputusan
	jaringan saraf, yang dikenal sebagai "kotak hitam" tanpa
	transparansi. Semua area yang mengandung drusen dikenali

dengan benar pada semua gambar yang digunakan untuk pengujian, sementara edema makula diabetik dan tes oklusi neovaskularisasi koroid kadang-kadang tidak menunjukkan hal yang menarik. Hal ini kemungkinan karena lesi dan kantong cairan neovaskularisasi koroid dan edema makula diabetik kadang-kadang muncul jauh lebih besar daripada jendela oklusi, sementara drusen cenderung berukuran lebih kecil. Hasil dari aplikasi utama dari algoritma pembelajaran transfer adalah dalam diagnosis gambar OCT retina. Spectral-domain OCT menggunakan cahaya untuk menangkap penampang retina optik resolusi tinggi in vivo yang dapat dirakit menjadi gambar tiga dimensi volume jaringan retina hidup. Selain itu, hampir 750.000 orang yang berusia 40 atau lebih menderita edema makula diabetik, suatu bentuk retinopati diabetik yang mengancam penglihatan yang melibatkan penumpukan cairan di retina sentral. OCT sangat penting untuk memandu administrasi terapi anti-VEGF dengan memberikan representasi penampang yang jelas dari patologi retina dalam kondisi ini, memungkinkan visualisasi lapisan retina individu, yang tidak mungkin dilakukan dengan pemeriksaan klinis oleh mata manusia atau dengan fotografi fundus berwarna.

No	12CU BUANA
140	
Judul Artikel	An infrastructure for precision medicine through analysis of big
Judui Artikei	data.[12]
Topik	Data Mining
Data	(i.e., laboratory exams, pathological anatomy exams, biopsy
	exams)
Metode / Algoritma	Collection layer, Anonymization layer, Machine learning and
	aggregation layer, Import and aggregate data.
Abstrak	Saat ini, semakin meningkatnya ketersediaan data omics, karena
	kemajuan dalam perolehan hasil biologi molekuler dan dalam
	teknologi simulasi biologi sistem, memberikan dasar untuk
	pengobatan presisi. Keberhasilan dalam kedokteran presisi
	tergantung pada akses ke layanan kesehatan dan data biomedis.

Digitalisasi sangat penting untuk mengumpulkan, berbagi, dan mengumpulkan volume besar data heterogen untuk mendukung tersembunyi penemuan pola dengan tujuan untuk mendefinisikan model prediksi untuk keperluan biomedis. Berbagi data pasien adalah proses penting. Data dari tiga platform berbeda dikumpulkan. Infrastruktur telah dirancang untuk memungkinkan ekstraksi dan agregasi data tidak terstruktur dan semi-terstruktur. Data diperlakukan dengan baik untuk memastikan keamanan dan privasi data. Infrastruktur ini memungkinkan integrasi berbagai sumber data yang anonim dari berbagai platform klinis yang beragam dan heterogen. Data tidak terstruktur dan semi-terstruktur diproses untuk mendapatkan analisis historis yang tepat dari aktivitas klinis satu atau lebih pasien. Agregasi data memungkinkan dilakukannya serangkaian penilaian statistik yang diperlukan untuk menjawab pertanyaan kompleks yang dapat digunakan dalam berbagai bidang, seperti kedokteran prediktif dan presisi.

MEI

Hasil

hasil yang diperoleh dengan menganalisis laboratorium, biopsi dan ujian anatomi patologis dengan perhatian khusus pada mekanisme impor dan agregasi dari berbagai jenis nilai. Data laboratorium sebagian besar bersifat numerik dengan kemungkinan adanya komentar teks bebas. Data yang diambil dari laboratorium diekspor ke file Format File Nilai Dipisahkan Koma. Itu mungkin untuk mengamati terjadinya pasien di pusat serta untuk mengevaluasi berapa banyak pasien mengulangi ujian beberapa kali. Setelah perubahan dalam sistem manajemen ujian, sejak 2014 data dari ujian biopsi disimpan dalam dua sumber data yang berbeda. Adapun sumber sebelumnya, data yang diekspor ke format Format File Microsoft Excel terdiri dari 3587 baris untuk 18 bidang yang berbeda, kebanyakan dari mereka teks gratis. Sedangkan untuk sumber terakhir, data yang diekspor dalam format Format File Nilai Dipisahkan Koma terdiri dari 3130 baris. Bidang utama seperti kuis diagnostik, situs nyeri, administrasi farmakologis, dan deskripsi ujian disediakan

sebagai teks gratis. Data ujian bioptik dari kedua sumber data terkait dengan 6716 kunjungan dibagi menjadi 5.186 pasien. Data terkait dengan 264.339 kunjungan dibagi menjadi 15.442 pasien. Metode pembelajaran mesin yang diawasi telah digunakan untuk menganalisis ujian yang dilaporkan sebagai teks bebas. Sedangkan untuk pemeriksaan anatomi, bidang yang relevan terkait dengan lokasi sampel dan diagnosis. Dalam Tabel 4 dilaporkan beberapa contoh kalimat yang digunakan untuk melatih dan menguji classifier. 3 menggunakan peta panas untuk merepresentasikan akurasi rata-rata dari simulasi yang berbeda. Seperti yang dilakukan sebelumnya, beberapa penilaian diekspor, diklasifikasikan secara manual, dan digunakan untuk melatih dan menguji pengklasifikasi. Akurasi rata-rata pengklasifikasi adalah 0,8 menunjukkan bahwa sistem mampu membuat katalog jenis penyakit dengan keandalan yang baik. Akhirnya, pengklasifikasi diterapkan untuk semua data yang tidak terklasifikasi yang dikumpulkan untuk periode yang dipertimbangkan dan dimungkinkan untuk mengklasifikasikan pemeriksaan yang berbeda sesuai dengan lokasi sampel dan klasifikasi diagnosis. Sebagai contoh, untuk tahun 2015 ditemukan 509 kasus «Kontrol / Monitoring / Tanpa Neoplastik», 779 kasus «Preneoplastik» dan 91 kasus «Neoplastik» dilaporkan terjadi pada sistem pencernaan. Pada saat yang sama, analisis lebih lanjut dilakukan pada data uji dalam biopsi dengan menentukan pengklasifikasi yang terkait dengan kepositifan atau negativitas yang terkait dengan kanker usus besar. 5 menunjukkan akurasi rata-rata dari 500 simulasi yang dilakukan untuk pengklasifikasi ini. Eksperimen yang dilakukan pada tes biopsi memungkinkan untuk mengamati keadaan patologi dengan menganalisis riwayat klinis pasien. 6 memungkinkan untuk mengamati berapa banyak perubahan keadaan dikaitkan dengan pasien yang berbeda. Informasi ini memungkinkan untuk mengidentifikasi pasien yang telah memulai jalur klinis dalam keadaan negatif dan kemudian menunjukkan penyakitnya. Catatan klinis agregat

	memungkinkan untuk mengevaluasi riwayat klinis pasien dan
	untuk mengevaluasi berbagai pemeriksaan laboratorium yang
	dilakukan dari waktu ke waktu dan untuk menghubungkannya
	dengan departemen pemeriksaan lainnya. 7 memperhitungkan
	130 pasien yang telah memiliki penyakit sejak mereka telah
	dirawat di Pusat Diag-nostik Italia dan berapa banyak ujian yang
	dilakukan masing-masing selama 30, 180 dan 365 hari. Seperti
	yang bisa diamati, pemeriksaan yang dilakukan oleh banyak
	pasien adalah pemeriksaan hitung darah lengkap.
	Infrastruktur yang dikembangkan memungkinkan integrasi
	berbagai sumber data anonim dan heterogen dari berbagai
	platform klinis yang digunakan oleh Pusat Diag-nostik Italia.
	Melalui anonimisasi, menjaga pembagian data tanpa alasan
	privasi dan keamanan. Algoritme yang diimplementasikan
Vocimpular	memungkinkan ekstraksi dan penggunaan data tidak terstruktur
Kesimpulan	atau semi-terstruktur, memperoleh analisis historis yang tepat
	dari aktivitas klinis satu atau lebih pasien. Secara khusus,
	mempelajari riwayat klinis pasien yang telah mengembangkan
	patologi serupa, dapat memungkinkan untuk memprediksi atau
	membedakan tanda yang memungkinkan diagnosis dini dari
11	kemungkinan penyakit.
DAE	Marco Moscatelli, Andrea Manconi, Mauro Pessina, Giovanni
Penulis IVIE	Fellegara, Stefano Rampoldi, Luciano Milanesi, Andrea
	Casasco dan Matteo Gnocchi.
Nama jurnal, Volume, Nomor, Tahun	BMC Bioinformatics, 19:351, 2018.
	Penulisan Artikel ini secara keseluruhann nya adalah baik dan
	mudah dipahami. Ulasan artikel dari Penelitian ini untuk
	kemajuan dalam perolehan hasil biologi molekuler dan dalam
	teknologi simulasi biologi sistem, memberikan dasar untuk
Ulasan artikel	pengobatan presisi. Keberhasilan dalam kedokteran presisi
	tergantung pada akses ke layanan kesehatan dan data biomedis.
	Digitalisasi sangat penting untuk mengumpulkan, berbagi, dan
	mengumpulkan volume besar data heterogen untuk mendukung
	penemuan pola tersembunyi dengan tujuan untuk
	mendefinisikan model prediksi untuk keperluan biomedis.
	ı

Berbagi data pasien adalah proses penting. Data dari tiga platform berbeda dikumpulkan. Infrastruktur telah dirancang untuk memungkinkan ekstraksi dan agregasi data tidak terstruktur dan semi-terstruktur. Data diperlakukan dengan baik untuk memastikan keamanan dan privasi data. Infrastruktur ini memungkinkan integrasi berbagai sumber data yang anonim dari berbagai platform klinis yang beragam dan heterogen. Data terstruktur dan semi-terstruktur diproses untuk tidak mendapatkan analisis historis yang tepat dari aktivitas klinis satu atau lebih pasien. Agregasi data memungkinkan dilakukannya serangkaian penilaian statistik yang diperlukan untuk menjawab pertanyaan kompleks yang dapat digunakan dalam berbagai bidang, seperti kedokteran prediktif dan presisi. Artikel ini memiliki infrastruktur yang dikembangkan memungkinkan integrasi berbagai sumber data anonim dan heterogen dari berbagai platform klinis yang digunakan oleh Pusat Diag-nostik Italia. Melalui anonimisasi, menjaga pembagian data tanpa alasan privasi dan keamanan. Algoritme diimplementasikan memungkinkan ekstraksi penggunaan data tidak terstruktur atau semi-terstruktur, memperoleh analisis historis yang tepat dari aktivitas klinis satu atau lebih pasien. Secara khusus, mempelajari riwayat klinis pasien yang telah mengembangkan patologi serupa, memungkinkan untuk memprediksi atau membedakan tanda yang memungkinkan diagnosis dini dari kemungkinan penyakit. hasil yang diperoleh dengan menganalisis data dari laboratorium, biopsi dan ujian anatomi patologis dengan perhatian khusus pada mekanisme impor dan agregasi dari berbagai jenis nilai. Data laboratorium sebagian besar bersifat numerik dengan kemungkinan adanya komentar teks bebas. Data yang diambil dari laboratorium diekspor ke file Format File Nilai Dipisahkan Koma. Itu mungkin untuk mengamati terjadinya pasien di pusat serta untuk mengevaluasi berapa banyak pasien mengulangi ujian beberapa kali. Setelah perubahan dalam sistem manajemen ujian, sejak 2014 data dari

ujian biopsi disimpan dalam dua sumber data yang berbeda. Adapun sumber sebelumnya, data yang diekspor ke format Format File Microsoft Excel terdiri dari 3587 baris untuk 18 bidang yang berbeda, kebanyakan dari mereka teks gratis. Sedangkan untuk sumber terakhir, data yang diekspor dalam format Format File Nilai Dipisahkan Koma terdiri dari 3130 baris. Bidang utama seperti kuis diagnostik, situs nyeri, administrasi farmakologis, dan deskripsi ujian disediakan sebagai teks gratis. Data ujian bioptik dari kedua sumber data terkait dengan 6716 kunjungan dibagi menjadi 5.186 pasien. Data terkait dengan 264.339 kunjungan dibagi menjadi 15.442 pasien. Metode pembelajaran mesin yang diawasi telah digunakan untuk menganalisis ujian yang dilaporkan sebagai teks bebas. Sedangkan untuk pemeriksaan anatomi, bidang yang relevan terkait dengan lokasi sampel dan diagnosis. Dalam Tabel 4 dilaporkan beberapa contoh kalimat yang digunakan untuk melatih dan menguji classifier. 3 menggunakan peta panas untuk merepresentasikan akurasi rata-rata dari simulasi yang berbeda. Seperti yang dilakukan sebelumnya, beberapa penilaian diekspor, diklasifikasikan secara manual, dan digunakan untuk melatih dan menguji pengklasifikasi. Akurasi rata-rata pengklasifikasi adalah 0,8 menunjukkan bahwa sistem mampu membuat katalog jenis penyakit dengan keandalan yang baik. Akhirnya, pengklasifikasi diterapkan untuk semua data yang tidak terklasifikasi yang dikumpulkan untuk periode yang dipertimbangkan dan dimungkinkan untuk mengklasifikasikan pemeriksaan yang berbeda sesuai dengan lokasi sampel dan klasifikasi diagnosis. Sebagai contoh, untuk tahun 2015 ditemukan 509 kasus «Kontrol / Monitoring / Tanpa Neoplastik», 779 kasus «Preneoplastik» dan 91 kasus «Neoplastik» dilaporkan terjadi pada sistem pencernaan. Pada saat yang sama, analisis lebih lanjut dilakukan pada data uji dalam biopsi dengan menentukan pengklasifikasi yang terkait dengan kepositifan atau negativitas yang terkait dengan kanker usus besar. 5 menunjukkan akurasi rata-rata dari 500 simulasi

yang dilakukan untuk pengklasifikasi ini. Eksperimen yang dilakukan pada tes biopsi memungkinkan untuk mengamati keadaan patologi dengan menganalisis riwayat klinis pasien. 6 memungkinkan untuk mengamati berapa banyak perubahan keadaan dikaitkan dengan pasien yang berbeda. Informasi ini memungkinkan untuk mengidentifikasi pasien yang telah memulai jalur klinis dalam keadaan negatif dan kemudian menunjukkan penyakitnya. Catatan klinis agregat memungkinkan untuk mengevaluasi riwayat klinis pasien dan untuk mengevaluasi berbagai pemeriksaan laboratorium yang dilakukan dari waktu ke waktu dan untuk menghubungkannya dengan departemen pemeriksaan lainnya. 7 memperhitungkan 130 pasien yang telah memiliki penyakit sejak mereka telah dirawat di Pusat Diag-nostik Italia dan berapa banyak ujian yang dilakukan masing-masing selama 30, 180 dan 365 hari. Seperti yang bisa diamati, pemeriksaan yang dilakukan oleh banyak pasien adalah pemeriksaan hitung darah lengkap.

No	13
Judul Artikel	Imputation and characterization of uncoded self-harm in major
Judui Aftikei	mental illness using machine learning.[13]
Topik	Data Mining
Data	The IBM MarketScan database (2003-2016).
Matada / Algoritma	Natural Language Processing (NLP), Regression Methods,
Metode / Algoritma	Random Forests, Bayesian Models.
	Penelitian ini bertujuan untuk memperhitungkan tindakan
	menyakiti diri sendiri yang tidak dikodekan dalam data klaim
	administratif individu dengan penyakit mental utama,
	mencirikan insiden tindakan menyakiti diri sendiri, dan
Abatala	mengidentifikasi faktor yang terkait dengan bias pengkodean.
Abstrak	Lima pengklasifikasi pembelajaran mesin diuji pada subset data
	yang seimbang, dengan XGBoost dipilih untuk set data lengkap.
	Kinerja klasifikasi divalidasi melalui kesalahan label data acak
	dan perbandingan dengan «standar emas» yang diturunkan dari
	dokter. Insiden selfharm yang dikodekan dan diperhitungkan

ditandai dengan tahun, usia pasien, jenis kelamin, U. Undercoding menyakiti diri sendiri lebih tinggi pada pria daripada pada individu wanita dan meningkat seiring bertambahnya usia. Hanya 1 dari 19 peristiwa melukai diri sendiri yang dikodekan untuk individu dengan MMI. ML dapat secara efektif memulihkan tindakan menyakiti diri yang tidak tercatat dalam data klaim dan menginformasikan studi epidemiologis dan observasi psikiatris.

kunjungan-meta

dicatat

selama

yang

20.783.244

Dari

29.799.203 tahun pengamatan pasien, probabilitas model datalengkap XGboost dari selfharm dijumlahkan menjadi 1.592.703, sesuai dengan insiden tahunan yang diperhitungkan secara keseluruhan sebesar 5,34%. Dari semua 20 juta kunjungan meta, 842263 memiliki probabilitas kelas 1> 0,5 dan 246 511 memiliki probabilitas kelas 1 0,95. Juga, dari 83.113 kunjunganmeta yang dikodekan untuk melukai diri sendiri, 79.882 memiliki probabilitas kelas 1> 0,5 dan 62929 memiliki probabilitas kelas 1 0,95. Performa model ML berbasis XGboost yang dilatih dan diuji pada kumpulan data berbeda ditunjukkan pada Tabel 1. Kinerja dari 5 algoritma klasifikasi ML yang berbeda yang diterapkan pada dataset yang seimbang ditunjukkan pada Tabel 2. Kesepakatan berpasangan antara Full-data-model, individu ahli klinis, dan standar emas konsensus ditunjukkan pada Tabel 3. Dari 200 meta -kunjungan, 79 dikategorikan sebagai kelas 1 oleh standar emas. Di antara 100 kunjungan meta dengan tindakan menyakiti diri sendiri, para ahli klinis memberi label 52 seperti itu, sedangkan dalam 100 kunjungan meta tanpa tindakan menyakiti diri sendiri yang terdokumentasi, dokter mengklasifikasikan hanya 27 yang memiliki tindakan menyakiti diri sendiri. Kesepakatan keseluruhan antara ML dan standar emas adalah 84%. 15 kovariat dengan skor perolehan tertinggi ditunjukkan pada Tabel 4. Model yang dibangun secara eksklusif dengan kovariat kondisi hanya memiliki kinerja yang sedikit lebih buruk

dibandingkan dengan model yang dibangun dengan semua kelas

Hasil

	kovariat. Menambahkan konsep leluhur tingkat tinggi memiliki
	efek yang dapat diabaikan pada kinerja model, kecuali untuk
	prosedur, di mana skor AUC meningkat dari 0,800 menjadi
	0,828 setelah menambahkan istilah leluhur ICD-10-PCS. Ketika
	perangkat kovariat tidak umum dan prediktif buruk digunakan
	sendiri, AUC dan akurasi 0,51, dan PKS 0,1. 100 kovariat yang
	berkontribusi paling besar pada Coding-biasmodel ada di Tabel
	Tambahan S2.
	Insiden melukai diri sendiri memuncak lebih cepat dan turun
	lebih awal pada pasien wanita vs pria muda dengan MMI.
	Namun, pasien laki-laki lebih cenderung melukai diri sendiri
	dengan undercode pada semua usia, menunjukkan kemungkinan
Kesimpulan	bias pelabelan penyedia terkait dengan stereotip jenis kelamin.
	Indikator psikiatris tentang bunuh diri dan kejadian somatik
	dikaitkan dengan pengkodean dengan melukai diri sendiri yang
	lebih tinggi pada pasien dengan MMI.
- ··	Praveen Kumar, Anastasiya Nestsiarovich, Stuart J. Nelson,
Penulis	Berit Kerner, Douglas J. Perkins dan Christophe G. Lambert
N	American Medical Informatics Association (AMIA), 27, 136-
Nama jurnal, Volume, Nomor, Tahun	146, 2020.
	Penulisan Artikel ini secara keseluruhann nya adalah baik dan
3.55	mudah dipahami. Ulasan artikel dari Penelitian ini untuk
ME	memperhitungkan tindakan menyakiti diri sendiri yang tidak
	dikodekan dalam data klaim administratif individu dengan
	penyakit mental utama, mencirikan insiden tindakan menyakiti
	diri sendiri, dan mengidentifikasi faktor yang terkait dengan bias
	pengkodean. Lima pengklasifikasi pembelajaran mesin diuji
Ulasan artikel	pada subset data yang seimbang, dengan XGBoost dipilih untuk
	set data lengkap. Kinerja klasifikasi divalidasi melalui
	kesalahan label data acak dan perbandingan dengan «standar
	emas» yang diturunkan dari dokter. Insiden selfharm yang
	dikodekan dan diperhitungkan ditandai dengan tahun, usia
	pasien, jenis kelamin, U. Undercoding menyakiti diri sendiri
	lebih tinggi pada pria daripada pada individu wanita dan
	meningkat seiring bertambahnya usia. Hanya 1 dari 19 peristiwa
	,

melukai diri sendiri yang dikodekan untuk individu dengan MMI. ML dapat secara efektif memulihkan tindakan menyakiti diri yang tidak tercatat dalam data klaim dan menginformasikan studi epidemiologis dan observasi psikiatris. Dalam artikel ini insiden melukai diri sendiri memuncak lebih cepat dan turun lebih awal pada pasien wanita vs pria muda dengan MMI. Namun, pasien laki-laki lebih cenderung melukai diri sendiri dengan undercode pada semua usia, menunjukkan kemungkinan bias pelabelan penyedia terkait dengan stereotip jenis kelamin. Indikator psikiatris tentang bunuh diri dan kejadian somatik dikaitkan dengan pengkodean dengan melukai diri sendiri yang lebih tinggi pada pasien dengan MMI. Dari 20.783.244 kunjungan-meta yang dicatat selama 29.799.203 tahun pengamatan pasien, probabilitas model data-lengkap XGboost dari selfharm dijumlahkan menjadi 1.592.703, sesuai dengan insiden tahunan yang diperhitungkan secara keseluruhan sebesar 5,34%. Dari semua 20 juta kunjungan meta, 842263 memiliki probabilitas kelas 1> 0,5 dan 246 511 memiliki probabilitas kelas 1 0,95. Juga, dari 83.113 kunjungan-meta yang dikodekan untuk melukai diri sendiri, 79.882 memiliki probabilitas kelas 1>0,5 dan 62929 memiliki probabilitas kelas 1 0,95. Performa model ML berbasis XGboost yang dilatih dan diuji pada kumpulan data berbeda ditunjukkan pada Tabel 1. Kinerja dari 5 algoritma klasifikasi ML yang berbeda yang diterapkan pada dataset yang seimbang ditunjukkan pada Tabel 2. Kesepakatan berpasangan antara Full-data-model, individu ahli klinis, dan standar emas konsensus ditunjukkan pada Tabel 3. Dari 200 meta -kunjungan, 79 dikategorikan sebagai kelas 1 oleh standar emas. Di antara 100 kunjungan meta dengan tindakan menyakiti diri sendiri, para ahli klinis memberi label 52 seperti itu, sedangkan dalam 100 kunjungan meta tanpa tindakan menyakiti diri sendiri yang terdokumentasi, dokter mengklasifikasikan hanya 27 yang memiliki tindakan menyakiti diri sendiri. Kesepakatan keseluruhan antara ML dan standar emas adalah 84%. 15 kovariat dengan skor perolehan tertinggi

ditunjukkan pada Tabel 4. Model yang dibangun secara	
eksklusif dengan kovariat kondisi hanya memiliki kinerja yang	
sedikit lebih buruk dibandingkan dengan model yang dibangun	
dengan semua kelas kovariat. Menambahkan konsep leluhur	
tingkat tinggi memiliki efek yang dapat diabaikan pada kinerja	
model, kecuali untuk prosedur, di mana skor AUC meningkat	
dari 0,800 menjadi 0,828 setelah menambahkan istilah leluhur	
ICD-10-PCS. Ketika perangkat kovariat tidak umum dan	
prediktif buruk digunakan sendiri, AUC dan akurasi 0,51, dan	
PKS 0,1. 100 kovariat yang berkontribusi paling besar pada	
Coding-biasmodel ada di Tabel Tambahan S2.	

No	14
Judul Artikel	API design for machine learning software: experiences from the
Judui Aitikei	scikit-learn project.[14]
Topik	Data Mining
Data	
Metode / Algoritma	
	scikit-learn adalah library machine learning yang semakin
	populer. Ditulis dengan Python, ia dirancang untuk menjadi
U	sederhana dan efisien, dapat diakses oleh non-ahli, dan dapat
NAC	digunakan kembali dalam berbagai konteks. Dalam tulisan ini,
IVIE	menyajikan dan mendiskusikan pilihan desain untuk antarmuka
Abstrak	pemrograman aplikasi proyek. Secara khusus, menjelaskan
Aostrak	antarmuka sederhana dan elegan yang dimiliki oleh semua unit
	pembelajaran dan pemrosesan di perpustakaan dan kemudian
	membahas kelebihannya dalam hal komposisi dan kegunaan
	kembali. Makalah ini juga mengomentari detail implementasi
	khusus untuk ekosistem Python dan menganalisis hambatan
	yang dihadapi oleh pengguna dan pengembang perpustakaan.
	Ada beberapa arah yang menjadi fokus proyek scikit-learn
	dalam pengembangan masa depan. Pada tingkat yang lebih
Hasil	rendah, pemrosesan paralel merupakan titik peningkatan yang
I	potensial. Beberapa estimator di scikit-learn sudah dapat
	memanfaatkan prosesor multicore, tetapi hanya dengan cara

	kasar. Oleh karena itu, setiap dekomposisi tugas paralel harus
	dilakukan di dalam modul Cython, atau pada tingkat yang cukup
	tinggi untuk menjamin overhead pembuatan beberapa proses
	tingkat OS, dan komunikasi antar-proses berikutnya. Pencarian
	grid paralel adalah contoh dari pendekatan terakhir yang telah
	diterapkan. Versi terbaru Cython menyertakan dukungan untuk
	standar OpenMP, yang merupakan kandidat teknologi yang
	layak untuk dukungan multicore yang lebih halus di scikit-learn.
	Masalah API ini akan diatasi di masa mendatang sebagai
	persiapan untuk rilis 1.0 scikit-learn.
	Scikit-learn API dan caranya memetakan konsep dan tugas
	machine learning ke objek dan operasi dalam bahasa
	pemrograman Python. Melalui pengetikan bebek, API yang
	konsisten mengarah ke pustaka yang mudah diperluas, dan
	memungkinkan estimator yang ditentukan pengguna untuk
	digabungkan ke dalam alur kerja scikit-learn tanpa pewarisan
	objek eksplisit apa pun. Meskipun bagian dari scikit-learn API
Kesimpulan	harus khusus Python, konsep inti mungkin berlaku untuk
	aplikasi pembelajaran mesin dan toolkit yang ditulis dalam
	bahasa pemrograman lain. Kekuatan, dan ekstensibilitas dari
U	scikit-learn API dibuktikan oleh basis pengguna yang besar dan
DAE	terus bertambah, penggunaannya untuk memecahkan masalah
IVIE	nyata di berbagai bidang, serta tampilan paket pihak ketiga yang
	mengikuti scikit- pelajari konvensi. Dirilis sebagai bagian dari
	paket lightning8, juga mengikuti konvensi scikit-learn.
	Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian
	Pedregosa, Andreas C. M"uller, Olivier Grisel, Vlad Niculae,
Penulis	Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert
	Layton 10, Jake Vanderplas, Arnaud Joly, Brian Holt dan Ga¨el
	Varoquaux.
Nama jurnal, Volume, Nomor, Tahun	-
	Penulisan Artikel ini secara keseluruhann nya adalah baik dan
Ulasan artikel	mudah dipahami. Ulasan artikel dari Penelitian ini untuk
	menjadi sederhana dan efisien, dapat diakses oleh non-ahli, dan
	dapat digunakan kembali dalam berbagai konteks. Dalam

tulisan ini, menyajikan dan mendiskusikan pilihan desain untuk antarmuka pemrograman aplikasi proyek. Secara khusus, menjelaskan antarmuka sederhana dan elegan yang dimiliki oleh semua unit pembelajaran dan pemrosesan di perpustakaan dan kemudian membahas kelebihannya dalam hal komposisi dan kegunaan kembali. Makalah ini juga mengomentari detail implementasi khusus untuk ekosistem Python dan menganalisis hambatan yang dihadapi oleh pengguna dan pengembang perpustakaan. Scikit-learn API dan caranya memetakan konsep dan tugas machine learning ke objek dan operasi dalam bahasa pemrograman Python. Melalui pengetikan bebek, API yang konsisten mengarah ke pustaka yang mudah diperluas, dan memungkinkan estimator yang ditentukan pengguna untuk digabungkan ke dalam alur kerja scikit-learn tanpa pewarisan objek eksplisit apa pun. Meskipun bagian dari scikit-learn API harus khusus Python, konsep inti mungkin berlaku untuk aplikasi pembelajaran mesin dan toolkit yang ditulis dalam bahasa pemrograman lain. Kekuatan, dan ekstensibilitas dari scikit-learn API dibuktikan oleh basis pengguna yang besar dan terus bertambah, penggunaannya untuk memecahkan masalah nyata di berbagai bidang, serta tampilan paket pihak ketiga yang mengikuti scikit- pelajari konvensi. Dirilis sebagai bagian dari paket lightning8, juga mengikuti konvensi scikit-learn. Hasil dari artikel ini beberapa arah yang menjadi fokus proyek scikitlearn dalam pengembangan masa depan. Pada tingkat yang lebih rendah, pemrosesan paralel merupakan titik peningkatan yang potensial. Beberapa estimator di scikit-learn sudah dapat memanfaatkan prosesor multicore, tetapi hanya dengan cara kasar. Oleh karena itu, setiap dekomposisi tugas paralel harus dilakukan di dalam modul Cython, atau pada tingkat yang cukup tinggi untuk menjamin overhead pembuatan beberapa proses tingkat OS, dan komunikasi antar-proses berikutnya. Pencarian grid paralel adalah contoh dari pendekatan terakhir yang telah diterapkan. Versi terbaru Cython menyertakan dukungan untuk standar OpenMP, yang merupakan kandidat teknologi yang

layak untuk dukungan multicore yang lebih halus di scikit-learn.
Masalah API ini akan diatasi di masa mendatang sebagai
persiapan untuk rilis 1.0 scikit-learn.

No	15
	Aerial Mapping of Forests Affected by Pathogens Using UAVs,
Judul Artikel	Hyperspectral Sensors, and Artificial Intelligence.[15]
Topik	Data Mining
Data	
Metode / Algoritma	
Abstrak	Pendekatan penginderaan jauh baru-baru ini telah menawarkan survei yang cepat, berskala luas, dan terjangkau serta indikator tambahan yang dapat melengkapi pengujian di lapangan. Makalah ini mengusulkan kerangka kerja yang menggabungkan wawasan berbasis situs dan kemampuan penginderaan jauh untuk mendeteksi dan mensegmentasi kerusakan oleh patogen jamur di hutan alam dan hutan tanaman. Pendekatan ini diilustrasikan dengan kasus percobaan karat myrtle pada pohon teh paperbark di New South Wales, Australia. Wawasan mengungkapkan tingkat deteksi individu sebesar 95% untuk pohon yang sehat, 97% untuk pohon yang rusak, dan tingkat deteksi multikelas global sebesar 97%.
Hasil	Untuk memvisualisasikan manfaat dari memasukkan skema optimasi di Langkah 8 dari Algoritma 1, tingkat deteksi dilacak dengan melatih dan menjalankan classifier beberapa kali dengan hanya satu set fitur yang difilter per instance. Fitur-fitur tersebut diberi peringkat dengan relevansinya oleh pengklasifikasi XGBoost dan diurutkan secara konsekuen, seperti yang diilustrasikan pada Gambar 7. Pengklasifikasi dapat mencapai tingkat akurasi yang tinggi melebihi 97% dari akurasi global ketika memproses data menggunakan dari 10 hingga 40 fitur saja, dengan jumlah yang optimal fitur dari 24. Di sisi lain, pengklasifikasi hanya meningkatkan register mereka ketika jumlah fitur yang diproses lebih banyak. Ciri-ciri yang paling relevan dari studi kasus ini digambarkan pada Tabel 1 dan

	Gambar 8. Meskipun ilustrasi mereka menunjukkan wawasan
	tentang intensitas yang dapat dibedakan antara kawasan pohon
	yang sehat dan yang terkena dampak dari Gambar 5, rangkaian
	fitur ini tidak cukup untuk mensegmentasi kawasan objek lain.
	Selain itu, fitur yang diproses dengan kernel 2D memperoleh
	skor relevansi yang lebih baik daripada rekan yang tidak
	diproses. Perbedaan itu bahkan lebih besar untuk fitur yang
	diproses menggunakan kernel jendela besar dengan
	mempertimbangkan bahwa jumlah noise yang tinggi, yang
	umum dalam citra hiperspektral mentah, mengubah performa
	pendekatan.
	Makalah ini menjelaskan metodologi pipeline untuk deteksi dan
	pemetaan yang efektif dari indikator kesehatan yang buruk di
	hutan dan pohon perkebunan yang mengintegrasikan
	pendekatan teknologi UAS dan kecerdasan buatan. Teknik
	diilustrasikan dengan klasifikasi yang akurat dan tugas
	segmentasi pohon teh paperbark yang rusak oleh karat myrtle
	dari percobaan eksklusi di NSW, Australia. Di sini, sistem
	mencapai tingkat deteksi 97,24% untuk pohon sehat dan 94,72%
	untuk pohon yang terkena dampak. Algoritma tersebut
Kesimpulan	memperoleh tingkat deteksi multikelas sebesar 97,35%.
MAE	Pendekatan ini dapat digunakan untuk melatih berbagai
IVIE	kumpulan data dari berbagai sensor untuk meningkatkan tingkat
	deteksi yang ditawarkan solusi tunggal serta kemampuan
	memproses kumpulan data besar menggunakan perangkat lunak
	freeware. Studi kasus mendemonstrasikan pendekatan efektif
	yang memungkinkan indikator cepat dan akurat, dan untuk
	perubahan area yang terpapar pada tahap awal. Namun,
	pemahaman epidemiologi penyakit dan interaksi antara patogen
	dan inang masih diperlukan untuk penggunaan teknologi ini
Page 1	secara efektif.
Penulis Nome in the National Volume Names Tahun	Juan Sandino, Geoff Pegg, Felipe Gonzalez dan Grant Smith.
Nama jurnal, Volume, Nomor, Tahun	Sensors, 18, 944, 2018.
Ulasan artikel	Penulisan Artikel ini secara keseluruhann nya adalah baik dan
	mudah dipahami. Ulasan artikel dari Penelitian ini untuk

mengusulkan kerangka kerja yang menggabungkan wawasan berbasis situs dan kemampuan penginderaan jauh untuk mendeteksi dan mensegmentasi kerusakan oleh patogen jamur di hutan alam dan hutan tanaman. Pendekatan ini diilustrasikan dengan kasus percobaan karat myrtle pada pohon teh paperbark di New South Wales, Australia. Wawasan mengungkapkan tingkat deteksi individu sebesar 95% untuk pohon yang sehat, 97% untuk pohon yang rusak, dan tingkat deteksi multikelas global sebesar 97%. Makalah ini menjelaskan metodologi pipeline untuk deteksi dan pemetaan yang efektif dari indikator kesehatan yang buruk di hutan dan pohon perkebunan yang mengintegrasikan pendekatan teknologi UAS dan kecerdasan buatan. Teknik diilustrasikan dengan klasifikasi yang akurat dan tugas segmentasi pohon teh paperbark yang rusak oleh karat myrtle dari percobaan eksklusi di NSW, Australia. Di sini, sistem mencapai tingkat deteksi 97,24% untuk pohon sehat dan 94,72% untuk pohon yang terkena dampak. Algoritma tersebut memperoleh tingkat deteksi multikelas sebesar 97,35%. Pendekatan ini dapat digunakan untuk melatih berbagai kumpulan data dari berbagai sensor untuk meningkatkan tingkat deteksi yang ditawarkan solusi tunggal serta kemampuan memproses kumpulan data besar menggunakan perangkat lunak freeware. Studi kasus mendemonstrasikan pendekatan efektif yang memungkinkan indikator cepat dan akurat, dan untuk perubahan area yang terpapar pada tahap awal. Namun, pemahaman epidemiologi penyakit dan interaksi antara patogen dan inang masih diperlukan untuk penggunaan teknologi ini secara efektif. Untuk memvisualisasikan manfaat dari memasukkan skema optimasi di Langkah 8 dari Algoritma 1, tingkat deteksi dilacak dengan melatih dan menjalankan classifier beberapa kali dengan hanya satu set fitur yang difilter per instance. Fitur-fitur tersebut diberi peringkat dengan relevansinya oleh pengklasifikasi XGBoost dan diurutkan secara konsekuen, seperti yang diilustrasikan pada Gambar 7. Pengklasifikasi dapat mencapai tingkat akurasi yang tinggi

melebihi 97% dari akurasi global ketika memproses data menggunakan dari 10 hingga 40 fitur saja, dengan jumlah yang optimal fitur dari 24. Di sisi lain, pengklasifikasi hanya meningkatkan register mereka ketika jumlah fitur yang diproses lebih banyak. Ciri-ciri yang paling relevan dari studi kasus ini digambarkan pada Tabel 1 dan Gambar 8. Meskipun ilustrasi mereka menunjukkan wawasan tentang intensitas yang dapat dibedakan antara kawasan pohon yang sehat dan yang terkena dampak dari Gambar 5, rangkaian fitur ini tidak cukup untuk mensegmentasi kawasan objek lain. Selain itu, fitur yang diproses dengan kernel 2D memperoleh skor relevansi yang lebih baik daripada rekan yang tidak diproses. Perbedaan itu bahkan lebih besar untuk fitur yang diproses menggunakan kernel jendela besar dengan mempertimbangkan bahwa jumlah noise yang tinggi, yang umum dalam citra hiperspektral mentah, mengubah performa pendekatan.

No	16
	A metabolite-based machine learning approach to diagnose
	Alzheimer-type dementia in blood: Results from the European
Madi Attici	Medical Information Framework for Alzheimer disease
IVIL	biomarker discovery cohort.[16]
Topik	Data Mining
Data	Analyzed metabolite 357 participants
Metode / Algoritma	K-nearest neighbor (RF and DL), XGBoost, Nested Cross
Wetoue / Aigoritina	Validation (NCV).
	Di sini menguji kinerja metabolit dalam darah untuk
	mengkategorikan DA jika dibandingkan dengan biomarker
	CSF. Demensia tipe AD memanfaatkan metabolit plasma. Studi
Abstrak	ini menunjukkan bahwa metabolit plasma memiliki potensi
	untuk menyamai AUC biomarker AD CSF yang telah terbentuk
	dengan baik dalam kohort yang relatif kecil. Studi lebih lanjut
	dalam kohort independen diperlukan untuk memvalidasi apakah
	panel metabolit darah tertentu ini dapat memisahkan DA dari

	kontrol, dan seberapa spesifiknya untuk DA dibandingkan
	dengan gangguan neurodegeneratif lainnya.
	Dalam studi ini, menganalisis data metabolit yang berasal dari
	sampel darah dari 357 partisipan yang sebelumnya dilaporkan
	dalam Kim et al. Pada data pengujian, model DL menghasilkan
	nilai Karakteristik Operasi Receiver Under the Curve sebesar
	0,85 dengan interval kepercayaan 95% berkisar antara 0,8038
	dan 0,8895. Model XGBoost menghasilkan nilai AUC 0,88.
	Simulasi MC dilakukan dengan XGBoost, yang merupakan
	model prediktif superior dalam analisis , menghasilkan
	distribusi Gaussian dari nilai AUC menurut dan seperti yang
	dikonfirmasi oleh uji Shapiro-Wilk. Uji-t menunjukkan bahwa
	rata-rata AUC yang sebenarnya untuk XGBoost yang diterapkan
Hasil	pada metabolit plasma tidak lebih rendah dari 0,87. Sebagai
	perbandingan, juga menyelidiki tingkat amiloid, p-tau dan t-tau,
	yang tambahkan juga usia dan jenis kelamin, dan prediksi
	mereka untuk AD klinis versus CN. Model XGBoost dibangun
	dengan cara yang sama seperti untuk prediktor metabolit.
	Bersama dengan usia dan jenis kelamin, amiloid menyebabkan
	AUC 0,78; p-tau menyebabkan AUC 0,83; dan t-tau
	menyebabkan AUC 0,87. 20 prediktor peringkat teratas dari 347
3.45	yang dipilih dengan metode yang disajikan pada bagian
ME	sebelumnya ditunjukkan pada Gambar. Analisis jalur
	mengungkapkan bahwa jalur Nitrogen terwakili secara
	berlebihan dalam panel.
	Dalam studi ini, menggunakan dua algoritma canggih, DL dan
	XGBoost, dan algoritma yang lebih konvensional, RF, untuk
	mendapatkan model akurasi tinggi untuk memprediksi AD
Kesimpulan	versus CN dengan metabolit sebagai prediktor. Studi
	menunjukkan bahwa model terbaik didasarkan pada XGBoost,
	yang merupakan bentuk penyempurnaan dari metode Gradient
	Boosting Machines berdasarkan pohon keputusan. Data inisiatif
	untuk prediksi AD, XGBoost menunjukkan hasil yang unggul
	AUC 5 0,97 ketika menyertakan parameter pencitraan sebagai
	prediktor dan jika dibandingkan dengan RF, Support Vector

Machines, Proses Gaussian, dan Stochastic Gradient Boosting. Dalam studi lain di mana kognisi dan MRI digunakan sebagai prediktor, Regresi Kernel Ridge dilakukan ke R2 5 0.87 ketika prediktor kognisi dan MRI dimasukkan. Analisis jalur menggunakan 20 AD teratas yang memprediksi metabolit yang berasal dari metode Relief menunjukkan bahwa jalur nitrogen terlalu terwakili. Metabolit baru yang mungkin menarik dan belum pernah dilaporkan sebelumnya terkait dengan DA adalah fitanat dan furoylglycine. Tujuan dari makalah ini adalah untuk membandingkan kinerja algoritma ML yang berbeda untuk mengidentifikasi orang dengan DA dari individu yang tidak mengalami gangguan kognitif. Di sini menunjukkan pertama bahwa ketiga pendekatan yang digunakan menunjukkan kekuatan diskriminatif yang baik, kedua bahwa XGBoost agak lebih efektif dalam kumpulan data khusus ini daripada RF dan DL dan ketiga, bahwa akurasi untuk diagnosis klinis ini secara luas mirip dengan yang dicapai oleh penanda CSF patologi AD. Kurangnya replikasi dan validasi dataset membatasi interpretasi dari temuan ini, namun demikian, prediksi kuat kategori diagnostik dari kumpulan biomarker metabolit berbasis darah merupakan bukti lebih lanjut dari potensi pendekatan tersebut untuk melengkapi biomarker lain dalam mengidentifikasi orang dengan kemungkinan AD.

ME

Penulis

Daniel Stamatea,b,c, Min Kimd, Petroula Proitsie, Sarah Westwoodf, Alison Bairdf, Alejo NevadoHolgadof, Abdul Hyee, Isabelle Bosg,h, Stephanie J. B. Vosg, Rik Vandenbergheh, Charlotte E. Teunisseni, Mara Ten Kateh,i, Philip Scheltensh, Silvy Gabelj,k, Karen Meersmansk,Olivier Blinm, Jill Richardsonn, Ellen De Roecko,p,q, Sebastiaan Engelborghsp,q,r, Kristel Sleegersq,s, Regis Bordett, Lorena Ramitu, Petronella Kettunenv, Magda Tsolakiw, Frans Verheyg, Daniel Alcoleax, Alberto Leox, Gwendoline Peyratouty, Mikel Taintaz, Peter Johannsenaa, Yvonne Freund-Levie,bb, Lutz Fr€olichcc, Valerija Dobricicdd, Giovanni B. Frisoniee,ff, Jose L. Molinuevot,gg, Anders Wallinhh, Julius

Poppy,ii, Pablo MartinezLagez, Lars Bertramdd,jj, Kaj Blennowk, Henrik Zetterbergk,mm,nn, Johannes Strefferoo, Pieter J. Visserg,h, Simon Lovestonef,pp, Cristina Legido-Quigley. ELSEVIER, 5, 933-938, 2019. Nama jurnal, Volume, Nomor, Tahun Penulisan Artikel ini secara keseluruhann nya adalah baik dan mudah dipahami. Ulasan artikel dari Penelitian ini untuk menguji kinerja metabolit dalam darah untuk mengkategorikan DA jika dibandingkan dengan biomarker CSF. Demensia tipe AD memanfaatkan metabolit plasma. Studi ini menunjukkan bahwa metabolit plasma memiliki potensi untuk menyamai AUC biomarker AD CSF yang telah terbentuk dengan baik dalam kohort yang relatif kecil. Studi lebih lanjut dalam kohort independen diperlukan untuk memvalidasi apakah panel metabolit darah tertentu ini dapat memisahkan DA dari kontrol, dan seberapa spesifiknya untuk DA dibandingkan dengan gangguan neurodegeneratif lainnya. Dalam studi ini, menggunakan dua algoritma canggih, DL dan XGBoost, dan algoritma yang lebih konvensional, RF, untuk mendapatkan model akurasi tinggi untuk memprediksi AD versus CN dengan Ulasan artikel metabolit sebagai prediktor. Studi menunjukkan bahwa model terbaik didasarkan pada XGBoost, yang merupakan bentuk penyempurnaan dari metode Gradient Boosting Machines berdasarkan pohon keputusan. Data inisiatif untuk prediksi AD, XGBoost menunjukkan hasil yang unggul AUC 5 0,97 ketika menyertakan parameter pencitraan sebagai prediktor dan jika dibandingkan dengan RF, Support Vector Machines, Proses Gaussian, dan Stochastic Gradient Boosting. Dalam studi lain di mana kognisi dan MRI digunakan sebagai prediktor, Regresi Kernel Ridge dilakukan ke R2 5 0.87 ketika prediktor kognisi dan MRI dimasukkan. Analisis jalur menggunakan 20 AD teratas yang memprediksi metabolit yang berasal dari metode Relief menunjukkan bahwa jalur nitrogen terlalu terwakili. Metabolit baru yang mungkin menarik dan belum pernah dilaporkan sebelumnya terkait dengan DA adalah fitanat dan

furoylglycine. Tujuan dari makalah ini adalah untuk membandingkan kinerja algoritma ML yang berbeda untuk mengidentifikasi orang dengan DA dari individu yang tidak mengalami gangguan kognitif. Di sini menunjukkan pertama bahwa ketiga pendekatan yang digunakan menunjukkan kekuatan diskriminatif yang baik, kedua bahwa XGBoost agak lebih efektif dalam kumpulan data khusus ini daripada RF dan DL dan ketiga, bahwa akurasi untuk diagnosis klinis ini secara luas mirip dengan yang dicapai oleh penanda CSF patologi AD. Kurangnya replikasi dan validasi dataset membatasi interpretasi dari temuan ini, namun demikian, prediksi kuat kategori diagnostik dari kumpulan biomarker metabolit berbasis darah merupakan bukti lebih lanjut dari potensi pendekatan tersebut untuk melengkapi biomarker lain dalam mengidentifikasi orang dengan kemungkinan AD. Dalam studi ini, menganalisis data metabolit yang berasal dari sampel darah dari 357 partisipan yang sebelumnya dilaporkan dalam Kim et al. Pada data pengujian, model DL menghasilkan nilai Karakteristik Operasi Receiver Under the Curve sebesar 0,85 dengan interval kepercayaan 95% berkisar antara 0,8038 dan 0,8895. Model XGBoost menghasilkan nilai AUC 0,88. Simulasi MC dilakukan dengan XGBoost, yang merupakan model prediktif superior dalam analisis, menghasilkan distribusi Gaussian dari nilai AUC menurut dan seperti yang dikonfirmasi oleh uji Shapiro-Wilk. Uji-t menunjukkan bahwa rata-rata AUC yang sebenarnya untuk XGBoost yang diterapkan pada metabolit plasma tidak lebih rendah dari 0,87. Sebagai perbandingan, juga menyelidiki tingkat amiloid, p-tau dan t-tau, yang tambahkan juga usia dan jenis kelamin, dan prediksi mereka untuk AD klinis versus CN. Model XGBoost dibangun dengan cara yang sama seperti untuk prediktor metabolit. Bersama dengan usia dan jenis kelamin, amiloid menyebabkan AUC 0,78; p-tau menyebabkan AUC 0,83; dan t-tau menyebabkan AUC 0,87. 20 prediktor peringkat teratas dari 347 yang dipilih dengan metode yang disajikan pada bagian sebelumnya ditunjukkan pada

Gambar. Analisis jalur mengungkapkan bahwa jalur Nitrogen
terwakili secara berlebihan dalam panel.

No	17
	Prediction of future gastric cancer risk using a machine learning
Judul Artikel	algorithm and comprehensive medical check-up data: A
	casecontrol study.[17]
Topik	Data Mining
Data	25.942 peserta endoskopi dari tahun 2006 hingga 2017
Metode / Algoritma	XGBoost, classification and regression trees (CARTs).
	Metode skrining komprehensif menggunakan pembelajaran
	mesin dan banyak faktor, yang dikumpulkan setiap hari sebagai
	data di rumah sakit, dapat meningkatkan keakuratan skrining
	untuk mengklasifikasikan pasien berisiko tinggi atau rendah
	terkena kanker lambung. menggunakan XGBoost, metode
	klasifikasi yang dikenal untuk mencapai berbagai solusi
Abstrak	pemenang dalam kompetisi analisis data, untuk menangkap
	hubungan nonlinier di antara banyak variabel input dan hasil
	menggunakan pendekatan peningkatan pembelajaran mesin.
	Data pemeriksaan kesehatan longitudinal dan komprehensif
	dikumpulkan dari 25.942 peserta yang menjalani banyak
ME	endoskopi dari tahun 2006 hingga 2017 di satu fasilitas di Jepang.
	Mempertimbangkan masalah klasifikasi mengenai apakah
	subjek akan memiliki risiko kanker lambung di masa depan
	dengan memprediksi apakah ia akan didiagnosis menderita
Hasil	kanker lambung dalam 122 bulan ke depan. mengklasifikasikan
	peserta ke dalam kelompok kasus atau kelompok kontrol jika
	wasor kanker lambung tidak terdeteksi, masing-masing, selama
	periode 122 bulan. Dari peserta, 1.144 dipilih secara acak untuk
	digunakan dalam model klasifikasi pelatihan, dan 287 sisanya
	digunakan untuk mengevaluasi akurasi prediksi model yang
	dibangun. Kinerja klasifikasi diukur dengan kurva karakteristik
	operasi penerima dan area mereka di bawah nilai kurva.
	membangun 10 model klasifikasi untuk menjawab dua

pertanyaan penelitian berikut. Tabel 1 menunjukkan daftar 10 model klasifikasi yang dibangun menggunakan XGBoost dan regresi logistik, sambil secara bertahap menambahkan variabel input yang terkait dengan faktor risiko kanker lambung. Meningkatkan variabel input untuk memprediksi kanker lambung di masa depan. Pertanyaan pertama adalah apakah hanya kedua faktor ini yang cukup untuk memprediksi kanker lambung di masa depan. Gambar 1 menunjukkan kurva KOP lima yang dihasilkan untuk model A – E yang diperoleh dengan menggunakan teknik XGBoost. Model D, yang menambahkan faktor latar belakang biologis ke model C, ditunjukkan dengan garis merah. melihat bahwa kinerja klasifikasi ditingkatkan dengan menambahkan variabel input. Nilai ABK umumnya meningkat dengan meningkatnya jumlah variabel masukan. Model E, yang memanfaatkan semua informasi untuk variabel input, menunjukkan nilai AUC terbaik untuk data uji yang tidak diketahui, dengan akurasi = 0,777, sensitivitas = 0,933 dan spesifitas = 0,768. Pengaturan hyperparameter yang berbeda dapat menghasilkan hasil klasifikasi yang berbeda. XGBoost memiliki beberapa hiperparameter yang harus dioptimalkan menggunakan data pelatihan. Untuk mengoptimalkan hyperparameter, memanfaatkan metode pengoptimalan Bayesian18,19, yang memungkinkan pemilihan otomatis dari kombinasi hyperparameter yang disukai menggunakan regresi proses Gaussian. Gambar Tambahan S1 hingga S5 menunjukkan perjalanan waktu nilai AUC pada CV dan data uji sebagai fungsi pembaruan hyperparameter XGBoost oleh BO. Terakhir, Tabel Tambahan S2 menyajikan skor penting untuk setiap variabel input yang disediakan oleh XGBoost, yang berkontribusi pada prediksi kanker lambung di masa depan. Dalam model E, HbA1c, rata-rata volume korpuskuler, rasio limfosit, usia, BMI dan pasca gastrektomi ditemukan sebagai variabel yang lebih penting. Faktor risiko yang dihitung secara otomatis untuk kanker lambung adalah wajar, seperti yang dijelaskan di bagian Diskusi di bawah. Pembelajaran mesin

nonlinier versus regresi logistik linier. Pertanyaan kedua adalah apakah metode pembelajaran mesin nonlinear yang maju dan sukses bisa efektif untuk memprediksi kanker lambung di masa depan dibandingkan dengan metode linier tradisional. bertujuan untuk menghitung keuntungan yang bisa diperoleh dengan menggunakan XGBoost dibandingkan dengan regresi logistik linier. Pada Tabel 2, model F – J menunjukkan hasil regresi logistik linier, yang menggunakan variabel input yang sama dengan XGBoost. Menemukan bahwa XGBoost mengungguli regresi logistik ketika variabel input meningkat. Sedangkan model A, B, C, F, G dan H hanya memasukkan variabel biner, model D, E, I dan J memasukkan banyak variabel kontinu. XGBoost mampu menangkap hubungan nonlinear antara hasil dan banyak variabel input dengan belajar, dan menunjukkan kinerja yang unggul dibandingkan dengan regresi logistik tradisional. Gambar Tambahan S1 hingga S5 menunjukkan perbandingan antara XGBoost dan regresi logistik dalam hal waktu perjalanan nilai AUC di bawah pembaruan hyperparameter oleh BO. Meskipun XGBoost dan regresi logistik menunjukkan hasil yang hampir sama pada beberapa variabel masukan, namun menunjukkan perbedaan yang signifikan ketika meningkatkan jumlah variabel masukan. Meningkatkan jumlah faktor masukan yang terkait dengan kanker lambung dan penggunaan metode pembelajaran mesin nonlinier lanjutan tampaknya efektif untuk memprediksi risiko kanker lambung di masa mendatang secara akurat.

ME

Kesimpulan

Dalam makalah ini 21 menyarankan bahwa skrining kanker lambung di U. harus dikelompokkan berdasarkan wilayah, usia, riwayat keluarga kanker lambung, infeksi H. pylori dan kondisi lambung. Penilaian komprehensif dari beberapa faktor risiko dapat berkontribusi pada peningkatan akurasi skrining kanker lambung, dan laporan sebelumnya menunjukkan faktor lain yang mungkin terkait dengan risiko pengembangan kanker lambung, seperti diabetes dan obesitas22,23. Anemia pernisiosa juga telah diduga terkait dengan adanya kanker lambung24.

Selain itu, jumlah leukosit diferensial, termasuk jumlah limfosit, mungkin berguna dalam memprediksi prognosis atau adanya kanker lambung 25,26. Risiko kanker lambung dapat meningkat setelah operasi lambung27. Hasil dapat memberikan informasi untuk mengklasifikasikan «pasien berisiko tinggi» yang harus direkomendasikan untuk skrining endoskopi yang sering untuk kanker lambung, dan «pasien berisiko rendah» yang tidak boleh. Beberapa penelitian telah dilakukan pada interval optimal untuk skrining kanker lambung endoskopi, dan saat ini tidak ada pedoman. Skrining kanker lambung direkomendasikan setiap 1-2 tahun untuk pasien berisiko tinggi di banyak negara21. 21 merekomendasikan skrining kanker lambung endoskopi setiap 3–5 tahun untuk pasien berisiko rendah di U. Dengan mengacu pada laporan sebelumnya ini, jika tes skrining yang akurat diperoleh setelah memperluas dan meningkatkan penelitian ini, dapat merekomendasikan skrining kanker lambung setiap 1 -2 tahun untuk pasien risiko tinggi dan setiap 3-5 tahun untuk pasien risiko rendah. menetapkan pasien yang tidak ada kanker lambung yang dapat dideteksi selama 122 bulan atau lebih sebagai kelompok kontrol. menetapkan 122 bulan sebagai batas waktu karena ini adalah periode terlama di mana kanker lambung dapat dideteksi dalam kelompok kasus. Secara umum diperkirakan bahwa permulaan kanker dimulai sekitar 20 tahun sebelum deteksi. Tus, kelompok kontrol mungkin termasuk pasien yang berpotensi mengembangkan kanker lambung di masa depan. Kelompok kontrol dalam penelitian tidak terdiri dari «pasien yang tidak akan menderita kanker lambung», melainkan «pasien di mana kanker lambung tidak akan terdeteksi dalam beberapa tahun». Selain itu, berbagai faktor risiko lingkungan dan faktor yang berhubungan dengan inang telah diduga terkait dengan kanker lambung. Karena penelitian menggunakan data pemeriksaan awal, pasien dengan temuan lambung awal yang tidak diidentifikasi mungkin telah dimasukkan dalam kelompok kasus. Prediksi dihitung berdasarkan data dari 1.431 pasien. Diperlukan waktu kurang

MF

	lebih 10 tahun untuk mendapatkan satu sampel untuk prediksi
	jangka panjang perkembangan kanker lambung.
	JunichiTaninaga, Yu Nishiyama, Kazutoshi Fujibayashi,
Penulis	ToshiakiGunji, Noriko Sasabe, Kimiko Iijima & Toshio
	Naito.
Nama jurnal, Volume, Nomor, Tahun	SCIENTIFIC REPORTS, 9, 12384, 2019.
	Penulisan Artikel ini secara keseluruhann nya adalah baik dan
	mudah dipahami. Ulasan artikel dari Penelitian ini untuk
	pembelajaran mesin dan banyak faktor, yang dikumpulkan
	setiap hari sebagai data di rumah sakit, dapat meningkatkan
	keakuratan skrining untuk mengklasifikasikan pasien berisiko
	tinggi atau rendah terkena kanker lambung. menggunakan
	XGBoost, metode klasifikasi yang dikenal untuk mencapai
	berbagai solusi pemenang dalam kompetisi analisis data, untuk
	menangkap hubungan nonlinier di antara banyak variabel input
	dan hasil menggunakan pendekatan peningkatan pembelajaran
	mesin. Data pemeriksaan kesehatan longitudinal dan
	komprehensif dikumpulkan dari 25.942 peserta yang menjalani
	banyak endoskopi dari tahun 2006 hingga 2017 di satu fasilitas
Ulasan artikel	di Jepang. Dalam makalah ini 21 menyarankan bahwa skrining
Clasan artikei	kanker lambung di U. harus dikelompokkan berdasarkan
ME	wilayah, usia, riwayat keluarga kanker lambung, infeksi H. pylori dan kondisi lambung. Penilaian komprehensif dari
	beberapa faktor risiko dapat berkontribusi pada peningkatan
	akurasi skrining kanker lambung, dan laporan sebelumnya
	menunjukkan faktor lain yang mungkin terkait dengan risiko
	pengembangan kanker lambung, seperti diabetes dan
	obesitas22,23. Anemia pernisiosa juga telah diduga terkait
	dengan adanya kanker lambung24. Selain itu, jumlah leukosit
	diferensial, termasuk jumlah limfosit, mungkin berguna dalam
	memprediksi prognosis atau adanya kanker lambung25,26.
	Risiko kanker lambung dapat meningkat setelah operasi
	lambung27. Hasil dapat memberikan informasi untuk
	mengklasifikasikan «pasien berisiko tinggi» yang harus
	direkomendasikan untuk skrining endoskopi yang sering untuk

kanker lambung, dan «pasien berisiko rendah» yang tidak boleh. Beberapa penelitian telah dilakukan pada interval optimal untuk skrining kanker lambung endoskopi, dan saat ini tidak ada pedoman. Skrining kanker lambung direkomendasikan setiap 1-2 tahun untuk pasien berisiko tinggi di banyak negara21. 21 merekomendasikan skrining kanker lambung endoskopi setiap 3–5 tahun untuk pasien berisiko rendah di U. Dengan mengacu pada laporan sebelumnya ini, jika tes skrining yang akurat diperoleh setelah memperluas dan meningkatkan penelitian ini, dapat merekomendasikan skrining kanker lambung setiap 1 -2 tahun untuk pasien risiko tinggi dan setiap 3-5 tahun untuk pasien risiko rendah. menetapkan pasien yang tidak ada kanker lambung yang dapat dideteksi selama 122 bulan atau lebih sebagai kelompok kontrol. menetapkan 122 bulan sebagai batas waktu karena ini adalah periode terlama di mana kanker lambung dapat dideteksi dalam kelompok kasus. Secara umum diperkirakan bahwa permulaan kanker dimulai sekitar 20 tahun sebelum deteksi. Tus, kelompok kontrol mungkin termasuk pasien yang berpotensi mengembangkan kanker lambung di masa depan. Kelompok kontrol dalam penelitian tidak terdiri dari «pasien yang tidak akan menderita kanker lambung», melainkan «pasien di mana kanker lambung tidak akan terdeteksi dalam beberapa tahun». Selain itu, berbagai faktor risiko lingkungan dan faktor yang berhubungan dengan inang telah diduga terkait dengan kanker lambung. Karena penelitian menggunakan data pemeriksaan awal, pasien dengan temuan lambung awal yang tidak diidentifikasi mungkin telah dimasukkan dalam kelompok kasus. Prediksi dihitung berdasarkan data dari 1.431 pasien. Diperlukan waktu kurang lebih 10 tahun untuk mendapatkan satu sampel untuk prediksi jangka panjang perkembangan kanker lambung. Hasil dari artikel ini Mempertimbangkan masalah klasifikasi mengenai apakah subjek akan memiliki risiko kanker lambung di masa depan dengan memprediksi apakah ia akan didiagnosis menderita kanker lambung dalam 122 bulan ke depan.

mengklasifikasikan peserta ke dalam kelompok kasus atau kelompok kontrol jika wasor kanker lambung tidak terdeteksi, masing-masing, selama periode 122 bulan. Dari peserta, 1.144 dipilih secara acak untuk digunakan dalam model klasifikasi pelatihan, dan 287 sisanya digunakan untuk mengevaluasi akurasi prediksi model yang dibangun. Kinerja klasifikasi diukur dengan kurva karakteristik operasi penerima dan area mereka di bawah nilai kurva. membangun 10 model klasifikasi untuk menjawab dua pertanyaan penelitian berikut. Tabel 1 menunjukkan daftar 10 model klasifikasi yang dibangun menggunakan XGBoost dan regresi logistik, sambil secara bertahap menambahkan variabel input yang terkait dengan faktor risiko kanker lambung. Meningkatkan variabel input untuk memprediksi kanker lambung di masa depan. Pertanyaan pertama adalah apakah hanya kedua faktor ini yang cukup untuk memprediksi kanker lambung di masa depan. Gambar 1 menunjukkan kurva KOP lima yang dihasilkan untuk model A - E yang diperoleh dengan menggunakan teknik XGBoost. Model D, yang menambahkan faktor latar belakang biologis ke model C, ditunjukkan dengan garis merah. melihat bahwa kinerja klasifikasi ditingkatkan dengan menambahkan variabel input. Nilai ABK umumnya meningkat dengan meningkatnya jumlah variabel masukan. Model E, yang memanfaatkan semua informasi untuk variabel input, menunjukkan nilai AUC terbaik untuk data uji yang tidak diketahui, dengan akurasi = 0,777, sensitivitas = 0,933 dan spesifitas = 0,768. Pengaturan hyperparameter yang berbeda dapat menghasilkan hasil klasifikasi yang berbeda. XGBoost memiliki beberapa hiperparameter yang harus dioptimalkan menggunakan data pelatihan. Untuk mengoptimalkan hyperparameter, memanfaatkan metode pengoptimalan Bayesian 18,19, yang memungkinkan pemilihan otomatis dari kombinasi hyperparameter yang disukai menggunakan regresi proses Gaussian. Gambar Tambahan S1 hingga S5 menunjukkan perjalanan waktu nilai AUC pada CV dan data uji sebagai fungsi

pembaruan hyperparameter XGBoost oleh BO. Terakhir, Tabel Tambahan S2 menyajikan skor penting untuk setiap variabel input yang disediakan oleh XGBoost, yang berkontribusi pada prediksi kanker lambung di masa depan. Dalam model E, HbA1c, rata-rata volume korpuskuler, rasio limfosit, usia, BMI dan pasca gastrektomi ditemukan sebagai variabel yang lebih penting. Faktor risiko yang dihitung secara otomatis untuk kanker lambung adalah wajar, seperti yang dijelaskan di bagian Diskusi di bawah. Pembelajaran mesin nonlinier versus regresi logistik linier. Pertanyaan kedua adalah apakah metode pembelajaran mesin nonlinear yang maju dan sukses bisa efektif untuk memprediksi kanker lambung di masa depan dibandingkan dengan metode linier tradisional. bertujuan untuk menghitung keuntungan yang bisa diperoleh dengan menggunakan XGBoost dibandingkan dengan regresi logistik linier. Pada Tabel 2, model F – J menunjukkan hasil regresi logistik linier, yang menggunakan variabel input yang sama dengan XGBoost. Menemukan bahwa XGBoost mengungguli regresi logistik ketika variabel input meningkat. Sedangkan model A, B, C, F, G dan H hanya memasukkan variabel biner, model D, E, I dan J memasukkan banyak variabel kontinu. XGBoost mampu menangkap hubungan nonlinear antara hasil dan banyak variabel input dengan belajar, dan menunjukkan kinerja yang unggul dibandingkan dengan regresi logistik tradisional. Gambar Tambahan S1 hingga S5 menunjukkan perbandingan antara XGBoost dan regresi logistik dalam hal perjalanan nilai AUC di bawah pembaruan hyperparameter oleh BO. Meskipun XGBoost dan regresi logistik menunjukkan hasil yang hampir sama pada beberapa variabel masukan, namun menunjukkan perbedaan yang signifikan ketika meningkatkan jumlah variabel masukan. Meningkatkan jumlah faktor masukan yang terkait dengan kanker lambung dan penggunaan metode pembelajaran mesin nonlinier lanjutan tampaknya efektif untuk memprediksi risiko kanker lambung di masa mendatang secara akurat.

No	18
Judul Artikel	Predicting urinary tract infections in the emergency department
	with machine learning.[18]
Topik	Data Mining
Data	Electronic Health Record (EHR) dataset.
	Random Forest, Extreme Gradient Boosting, Adaptive
Metode / Algoritma	Boosting, Support Vector machine, Elastic Net, Neural Network
	dan Logistic Regression.
	Infeksi saluran kemih adalah diagnosis gawat darurat umum
	dengan tingkat kesalahan diagnostik yang dilaporkan tinggi.
	Karena kultur urin, bagian dari standar emas untuk diagnosis
	ISK, biasanya tidak tersedia selama 24-48 jam setelah
	kunjungan UGD, keputusan diagnosis dan pengobatan
	didasarkan pada gejala, temuan fisik, dan hasil laboratorium
	lainnya, yang berpotensi menyebabkan penggunaan berlebihan
	, resistensi antibiotik, dan pengobatan tertunda. Penelitian
	sebelumnya telah menunjukkan kinerja diagnostik yang tidak
	memadai untuk tes laboratorium individu dan alat prediksi.
Abstrak	Tujuan , adalah untuk melatih, memvalidasi, dan
	membandingkan model prediktif berbasis pembelajaran mesin
U	untuk ISK pada pasien DE yang sangat beragam. Analisis kohort
ME	retrospektif satu pusat, multi-tempat dari 80.387 kunjungan DE
IVIL	dewasa dengan hasil kultur urin dan gejala ISK.
	mengembangkan model untuk prediksi ISK dengan enam
	algoritme pembelajaran mesin menggunakan informasi
	demografis, tanda vital, hasil laboratorium, obat-obatan, riwayat
	kesehatan masa lalu, keluhan utama, dan temuan pemeriksaan
	fisik dan riwayat terstruktur. Prediksi ISK dibandingkan antara
	model dan proksi penilaian penyedia.
Hasil	Sebanyak 80.387 kunjungan UGD memiliki hasil kultur urin,
	gejala yang berpotensi disebabkan ISK, dan akhirnya
	dimasukkan dalam analisis akhir. Ada 18.284 kultur urin positif,
	14.335 pada wanita, dan 3.755 pada pria. Sementara
	menetapkan sensitivitas model berkinerja terbaik ke nilai yang
	sama dengan kombinasi antibiotik ATAU dokumentasi

	diagnosis ISK, model lengkap dan tereduksi dengan kinerja
	terbaik menunjukkan spesifisitas yang jauh lebih unggul dengan
	perbedaan 33,3 dan 29,6, masing-masing. Dibingkai dalam
	perspektif yang lebih klinis, dalam menerapkan model untuk
	keseluruhan validasi kohort yang diterima / dipulangkan, sekitar
	1 dari 4 pasien akan dikategorikan ulang dari positif palsu
	menjadi negatif benar jika dibandingkan dengan penilaian
	penyedia yang ditentukan oleh diagnosis ISK dan resep
	antibiotik . Membandingkan hanya diagnosis ISK dengan model
	berkinerja terbaik yang ditetapkan pada spesifisitas yang sama,
	model lengkap dan tereduksi dengan kinerja terbaik juga
	menunjukkan sensitivitas yang jauh lebih unggul dengan
	perbedaan 38,7 dan 33,2. Dalam kohort validasi keseluruhan
	yang diterima / dipulangkan sekitar 1 dari 11 pasien akan
	dikategorikan ulang dari negatif palsu menjadi positif benar jika
	dibandingkan dengan penilaian penyedia yang ditentukan oleh
	diagnosis ISK saja. Di antara kunjungan yang menerima
	antibiotik, ada 156 kunjungan dengan diagnosis infeksi
	alternatif yang jelas pada mereka dengan kultur urin positif dan
	529 pada mereka dengan kultur urin negatif. Di antara
11	kunjungan pulang yang menerima antibiotik, ada 52 kunjungan
BAE	dengan diagnosis infeksius alternatif yang jelas dan 200
IVIE	kunjungan dengan kultur urin negatif.
	Dalam penelitian ini mengembangkan dan memvalidasi model
	untuk prediksi infeksi saluran kemih pada kunjungan gawat
	darurat pada dataset EHR yang besar, algoritma pembelajaran
	mesin yang berkinerja terbaik, XGBoost, hasil kultur urin positif
Kesimpulan	yang terdiagnosis secara akurat dan berkinerja lebih baik. model
	yang dikembangkan sebelumnya dalam literatur dan beberapa
	proxy untuk penilaian penyedia. Studi implementasi masa depan
	harus secara prospektif memeriksa dampak model pada hasil
	dan kesalahan diagnostik.
Penulis	R. Andrew Taylor, Christopher L. Moore, Kei-Hoi Cheung,
	Cynthia Brandt.
Nama jurnal, Volume, Nomor, Tahun	PLOS ONE, 10, 1371, 2018.

Ulasan artikel

MEI

Penulisan Artikel ini secara keseluruhann nya adalah baik dan mudah dipahami. Ulasan artikel dari Penelitian ini untuk diagnosis gawat darurat umum dengan tingkat kesalahan diagnostik yang dilaporkan tinggi. Karena kultur urin, bagian dari standar emas untuk diagnosis ISK, biasanya tidak tersedia selama 24-48 jam setelah kunjungan UGD, keputusan diagnosis dan pengobatan didasarkan pada gejala, temuan fisik, dan hasil laboratorium menyebabkan lainnya, yang berpotensi penggunaan berlebihan, resistensi antibiotik, dan pengobatan tertunda. Penelitian sebelumnya telah menunjukkan kinerja diagnostik yang tidak memadai untuk tes laboratorium individu dan alat prediksi. Tujuan , adalah untuk melatih, memvalidasi, dan membandingkan model prediktif berbasis pembelajaran mesin untuk ISK pada pasien DE yang sangat beragam. Analisis kohort retrospektif satu pusat, multi-tempat dari 80.387 kunjungan DE dewasa dengan hasil kultur urin dan gejala ISK. mengembangkan model untuk prediksi ISK dengan enam algoritme pembelajaran mesin menggunakan informasi demografis, tanda vital, hasil laboratorium, obat-obatan, riwayat kesehatan masa lalu, keluhan utama, dan temuan pemeriksaan fisik dan riwayat terstruktur. Prediksi ISK dibandingkan antara model dan proksi penilaian penyedia. Dalam penelitian ini mengembangkan dan memvalidasi model untuk prediksi infeksi saluran kemih pada kunjungan gawat darurat pada dataset EHR yang besar, algoritma pembelajaran mesin yang berkinerja terbaik, XGBoost, hasil kultur urin positif yang terdiagnosis secara akurat dan berkinerja lebih baik. model yang dikembangkan sebelumnya dalam literatur dan beberapa proxy untuk penilaian penyedia. Studi implementasi masa depan harus secara prospektif memeriksa dampak model pada hasil dan kesalahan diagnostik. Hasil dari artikel ini Sebanyak 80.387 kunjungan UGD memiliki hasil kultur urin, gejala yang berpotensi disebabkan ISK, dan akhirnya dimasukkan dalam analisis akhir. Ada 18.284 kultur urin positif, 14.335 pada wanita, dan 3.755 pada pria. Sementara menetapkan sensitivitas

model berkinerja terbaik ke nilai yang sama dengan kombinasi antibiotik ATAU dokumentasi diagnosis ISK, model lengkap dan tereduksi dengan kinerja terbaik menunjukkan spesifisitas yang jauh lebih unggul dengan perbedaan 33,3 dan 29,6, masing-masing. Dibingkai dalam perspektif yang lebih klinis, dalam menerapkan model untuk keseluruhan validasi kohort yang diterima / dipulangkan, sekitar 1 dari 4 pasien akan dikategorikan ulang dari positif palsu menjadi negatif benar jika dibandingkan dengan penilaian penyedia yang ditentukan oleh diagnosis ISK dan resep antibiotik . Membandingkan hanya diagnosis ISK dengan model berkinerja terbaik yang ditetapkan pada spesifisitas yang sama, model lengkap dan tereduksi dengan kinerja terbaik juga menunjukkan sensitivitas yang jauh lebih unggul dengan perbedaan 38,7 dan 33,2. Dalam kohort validasi keseluruhan yang diterima / dipulangkan sekitar 1 dari 11 pasien akan dikategorikan ulang dari negatif palsu menjadi positif benar jika dibandingkan dengan penilaian penyedia yang ditentukan oleh diagnosis ISK saja. Di antara kunjungan yang menerima antibiotik, ada 156 kunjungan dengan diagnosis infeksi alternatif yang jelas pada mereka dengan kultur urin positif dan 529 pada mereka dengan kultur urin negatif. Di antara kunjungan pulang yang menerima antibiotik, ada 52 kunjungan dengan diagnosis infeksius alternatif yang jelas dan 200 kunjungan dengan kultur urin negatif.

No	19
	Predictive models to assess risk of type 2 diabetes, hypertension
Judul Artikel	and comorbidity: machine-learning algorithms and validation
	using national health data from Kuwait—a cohort study.[19]
Topik	Data Mining
Data	Kuwait Health Network
	Cross Validation (CV), Logistic regression (LR), k-Nearest
Metode / Algoritma	neighbours, Support Vector Machine (SVM) dan Multifactor
	Dimensionality Reduction (MDR).

Abstrak Hasil

Membangun model klasifikasi dan alat penilaian risiko untuk diabetes, hipertensi, dan komorbiditas menggunakan algoritme machine learning pada data dari Kuwait. Insiden diabetes tipe 2, hipertensi dan komorbiditas. Alat penilaian risiko berdasarkan model klasifikasi k-NN mampu menetapkan risiko 'tinggi' untuk 75% pasien diabetes dan 94% pasien hipertensi. Kondisi patologis diabetes pada populasi umum atau pada populasi hipertensi dan hipertensi dimodelkan. Model klasifikasi agregat dua tahap dan alat penilaian risiko, dibangun dengan menggabungkan kedua model komponen pada diabetes, berkinerja lebih baik daripada model individual. Data tentang diabetes, hipertensi dan komorbiditas dari negara kosmopolitan Kuwait tersedia untuk pertama kalinya. Alat-alat ini membantu dalam penilaian non-intrusif awal dari populasi. Penilaian risiko perlu dikembangkan menggunakan data regional karena menunjukkan penerapan kalkulator online Asosiasi Diabetes Amerika pada data dari Kuwait.

ME

Penerapan teknik pembelajaran mesin untuk membedakan penderita diabetes tipe 2 dari populasi non-diabetes dan pasien hipertensi dari pasien non-hipertensi diperiksa. Model-model tersebut dilatih dengan data tentang parameter dasar non-intrusif dari Jaringan Kesehatan Kuwait nasional tentang diabetes dan hipertensi. Nilai akurasi> 85% untuk mengklasifikasikan penderita diabetes dari non-diabetes dengan benar, dan> 90% untuk mengklasifikasikan hipertensi dari populasi nonhipertensi dengan benar dapat dilakukan dengan model klasifikasi yang dibangun menggunakan SVM dan k-NN. Hingga 75% penderita diabetes dikelompokkan ke dalam risiko 'tinggi', dan sedikitnya 5% pasien nondiabetes dikelompokkan ke dalam kategori risiko 'tinggi'. Situasi patologi yang berbeda dimodelkan, yaitu diabetes pada populasi umum, diabetes pada populasi hipertensi, hipertensi pada populasi umum dan hipertensi pada populasi diabetes. Model klasifikasi agregat dua tahap, yang dibuat dengan menggabungkan kedua model pada diabetes atau kedua model pada hipertensi, berkinerja jauh lebih

	baik daripada model individual. Pemeriksaan kinerja alat
	penilaian risiko online ADA pada data dari Kuwait
	menunjukkan bahwa alat ADA bekerja hampir secara acak
	dalam membedakan penderita diabetes dari non-diabetes di
	Kuwait. Ini sesuai dengan gagasan bahwa disposisi terhadap
	diabetes meningkatkan kecenderungan terhadap hipertensi dan
	sebaliknya.
	Dengan menggunakan parameter non-invasif dasar yang tidak
	berbasis laboratorium, berhasil memprediksi, dengan tingkat
	keakuratan yang tinggi, timbulnya diabetes dan hipertensi pada
	pasien di Kuwait, serupa dengan yang terlihat dalam penelitian
	lain. 7 Kedua, dapat memodelkan peningkatan kerentanan pada
W : 1	pasien diabetes untuk mengembangkan hipertensi dan
Kesimpulan	sebaliknya. 26 27 28 Saat mengembangkan model klasifikasi
	untuk pasien di Kuwait, menghapus bidang etnis dari data
	menyebabkan penurunan akurasi minimal 6%. Karena yang
	terakhir dibuat menggunakan pasien di AS, yang secara alami
	memiliki demografi etnis yang berbeda dengan Kuwait, melihat
	perbedaan besar dalam hasil.
- ·	Bassam Farran, Arshad Mohamed Channanath, Kazem
Penulis	Behbehani, Thangavel Alphonse Thanaraj.
Nama jurnal, Volume, Nomor, Tahun	BMJ Open, 10, 1136, 2013.
ME	Penulisan Artikel ini secara keseluruhann nya adalah baik dan
	mudah dipahami. Ulasan artikel dari Penelitian ini untuk
	membangun model klasifikasi dan alat penilaian risiko untuk
	diabetes, hipertensi, dan komorbiditas menggunakan algoritme
	machine learning pada data dari Kuwait. Insiden diabetes tipe 2,
	hipertensi dan komorbiditas. Alat penilaian risiko berdasarkan
Ulasan artikel	model klasifikasi k-NN mampu menetapkan risiko 'tinggi' untuk
	75% pasien diabetes dan 94% pasien hipertensi. Kondisi
	patologis diabetes pada populasi umum atau pada populasi
	hipertensi dan hipertensi dimodelkan. Model klasifikasi agregat
	dua tahap dan alat penilaian risiko, dibangun dengan
	menggabungkan kedua model komponen pada diabetes,
	menggabungkan kedua model komponen pada diabetes, berkinerja lebih baik daripada model individual. Data tentang

diabetes, hipertensi dan komorbiditas dari negara kosmopolitan Kuwait tersedia untuk pertama kalinya. Alat-alat ini membantu dalam penilaian non-intrusif awal dari populasi. Penilaian risiko perlu dikembangkan menggunakan data regional karena menunjukkan penerapan kalkulator online Asosiasi Diabetes Amerika pada data dari Kuwait. Dengan menggunakan parameter non-invasif dasar yang tidak berbasis laboratorium, berhasil memprediksi, dengan tingkat keakuratan yang tinggi, timbulnya diabetes dan hipertensi pada pasien di Kuwait, serupa dengan yang terlihat dalam penelitian lain. 7 Kedua, dapat memodelkan peningkatan kerentanan pada pasien diabetes untuk mengembangkan hipertensi dan sebaliknya. 26 27 28 Saat mengembangkan model klasifikasi untuk pasien di Kuwait, menghapus bidang etnis dari data menyebabkan penurunan akurasi minimal 6%. Karena yang terakhir dibuat menggunakan pasien di AS, yang secara alami memiliki demografi etnis yang berbeda dengan Kuwait, melihat perbedaan besar dalam hasil. Penerapan teknik pembelajaran mesin untuk membedakan penderita diabetes tipe 2 dari populasi non-diabetes dan pasien hipertensi dari pasien non-hipertensi diperiksa. Model-model tersebut dilatih dengan data tentang parameter dasar non-intrusif dari Jaringan Kesehatan Kuwait nasional tentang diabetes dan hipertensi. Nilai akurasi> 85% untuk mengklasifikasikan penderita diabetes dari non-diabetes dengan benar, dan> 90% untuk mengklasifikasikan hipertensi dari populasi nonhipertensi dengan benar dapat dilakukan dengan model klasifikasi yang dibangun menggunakan SVM dan k-NN. Hingga 75% penderita diabetes dikelompokkan ke dalam risiko 'tinggi', dan sedikitnya 5% pasien nondiabetes dikelompokkan ke dalam kategori risiko 'tinggi'. Situasi patologi yang berbeda dimodelkan, yaitu diabetes pada populasi umum, diabetes pada populasi hipertensi, hipertensi pada populasi umum dan hipertensi pada populasi diabetes. Model klasifikasi agregat dua tahap, yang dibuat dengan menggabungkan kedua model pada diabetes atau kedua model pada hipertensi, berkinerja jauh lebih

baik daripada model individual. Pemeriksaan kinerja alat
penilaian risiko online ADA pada data dari Kuwait
menunjukkan bahwa alat ADA bekerja hampir secara acak
dalam membedakan penderita diabetes dari non-diabetes di
Kuwait. Ini sesuai dengan gagasan bahwa disposisi terhadap
diabetes meningkatkan kecenderungan terhadap hipertensi dan
sebaliknya.

No	20
Judul Artikel	Prediction of Acute Kidney Injury With a Machine Learning
	Algorithm Using Electronic Health Record Data.[20]
Topik	Data Mining
Data	300 000 inpatient encounters
Metode / Algoritma	Sequential Organ Failure Assessment (SOFA).
	Dokter dapat melakukan intervensi selama apa yang mungkin
	merupakan tahap penting untuk mencegah cedera ginjal
	permanen jika pasien dengan AKI yang baru jadi dan mereka
	yang berisiko tinggi mengembangkan AKI dapat diidentifikasi.
	Dalam studi ini, mengevaluasi algoritma pembelajaran mesin
ME	untuk deteksi dini dan prediksi AKI. menggunakan teknik
	pembelajaran mesin, meningkatkan ansambel pohon keputusan,
	untuk melatih alat prediksi AKI pada data retrospektif yang diambil dari lebih dari 300.000 pertemuan pasien rawat inap.
	Data dikumpulkan dari bangsal rawat inap di Stanford Medical
Abstrak	Center dan pasien unit perawatan intensif di Beth Israel
	Deaconess Medical Center. Pasien yang berusia lebih dari 18
	tahun yang dirawat di rumah sakit berlangsung antara 5 dan
	1000 jam dan yang memiliki setidaknya satu pengukuran detak
	jantung, laju pernapasan, suhu, kreatinin serum, dan Skala
	Koma Glasgow yang terdokumentasi. menguji kemampuan
	algoritme untuk mendeteksi AKI saat onset dan untuk
	memprediksi AKI 12, 24, 48, dan 72 jam sebelum onset.
	menguji deteksi dan prediksi AKI menggunakan Algoritma AKI
	National Health Service Inggris sebagai standar emas. Karena
	sifat retrospektif dari penelitian ini, tidak dapat menarik

kesimpulan tentang dampak prediksi algoritma terhadap hasil pasien dalam pengaturan klinis. Hasil eksperimen ini menunjukkan bahwa alat prediksi AKI berbasis pembelajaran mesin mungkin menawarkan kemampuan prognostik penting untuk menentukan pasien mana yang kemungkinan menderita AKI, yang berpotensi memungkinkan dokter untuk campur tangan sebelum kerusakan ginjal terjadi.

Pendekatan machine learning yang dijelaskan di sini menghasilkan alat prediksi yang menunjukkan kinerja prediksi yang kuat, dalam hal AUROC, hingga 72 jam sebelum onset AKI tahap 2 atau tahap 3, di bawah kriteria NHS dan KDIGO untuk AKI. Dengan hanya membutuhkan 5 pengukuran ini untuk prediksi AKI, algoritma ini dirancang untuk dapat memprediksi risiko AKI pada sebagian besar populasi rumah sakit dalam pekerjaan klinis di masa depan. Berdasarkan hasil ini, percaya MLA ini dapat memberikan dokter kesempatan untuk meningkatkan hasil pasien melalui deteksi AKI lebih dini dan intervensi berikutnya, yang mungkin termasuk resusitasi volume atau menghindari obat nefrotoksik untuk meminimalkan cedera ginjal lebih lanjut. 28 menekankan bahwa MLA berkinerja sama baiknya pada kumpulan data BIDMC dan Stanford. Data BIDMC hanya memasukkan pasien yang dirawat di ICU, sedangkan kumpulan data Stanford berisi informasi tentang rawat inap dari semua bangsal rumah sakit. Kedua kumpulan data ini mewakili pengaturan rumah sakit dengan demografi yang berbeda, frekuensi pengumpulan pengukuran pasien, tingkat penyediaan perawatan, dan tingkat keparahan penyakit pada pasien. Kemampuan prediksi algoritme di seluruh kumpulan data ini menunjukkan bahwa algoritme dapat mengidentifikasi pasien yang berisiko terkena AKI di berbagai pengaturan rumah sakit. Karena AKI adalah komplikasi umum dari rawat inap di rumah sakit dengan sifat yang beragam, 1 kemampuan ini sangat penting dalam alat prediksi AKI. Dalam studi sebelumnya, menilai MLA untuk deteksi sepsis di kedua pengaturan retrospektif29-31 dan prospektif. Dalam penelitian

Hasil

	ini, terdapat penurunan yang signifikan secara statistik pada titik
	akhir primer rata-rata lama rawat di rumah sakit dan pada titik
	akhir sekunder dari angka kematian di rumah sakit. 32 Studi ini
	menunjukkan kelayakan penggunaan samping tempat tidur dari
	sistem prediksi berbasis pembelajaran mesin, serta potensi
	sistem tersebut untuk meningkatkan hasil pasien melalui deteksi
	dini dan lebih akurat dari kondisi pasien. Implementasi klinis di
	masa mendatang dari sistem yang dijelaskan dalam pekerjaan
	ini dimaksudkan untuk tidak mengganggu alur kerja klinis atau
	memerlukan pekerjaan tambahan dari penyedia perawatan.
	Metode pembelajaran mesin sebelumnya telah diterapkan pada
	deteksi AKI. Manfaat terukur dari fokus pada prediksi AKI
	dapat memungkinkan dokter untuk lebih cepat menentukan
	penyebab kemunduran pasien dan, dengan demikian,
	memberikan perawatan yang tepat secara lebih tepat waktu.
	Pendekatan machine learning yang dijelaskan dalam penelitian
	ini secara akurat memprediksi AKI tahap 2 atau tahap 3 hingga
Kesimpulan	72 jam masuk kemajuan onset pada saat dilatih dan diuji pada
Resimpulan	dua yang berbeda set data. Algoritme ini dapat meningkatkan
	deteksi AKI di pengaturan klinis, memungkinkan untuk
11	intervensi lebih awal dan meningkatkan hasil pasien.
DAT.	Hamid Mohamadlou, Anna Lynn-Palevsky, Christopher Barton,
Penulis IVIE	Uli Chettipally, Lisa Shieh, Jacob Calvert, Nicholas R. Saber
	dan Ritankar Das.
Nama jurnal, Volume, Nomor, Tahun	Canadian Journal of Kidney Health and Disease, 5, 1-9, 2018
	Penulisan Artikel ini secara keseluruhann nya adalah baik dan
	mudah dipahami. Ulasan artikel dari Penelitian ini untuk
	melakukan intervensi selama apa yang mungkin merupakan
	tahap penting untuk mencegah cedera ginjal permanen jika
Ulasan artikel	pasien dengan AKI yang baru jadi dan mereka yang berisiko
	tinggi mengembangkan AKI dapat diidentifikasi. Dalam studi
	ini, mengevaluasi algoritma pembelajaran mesin untuk deteksi
	dini dan prediksi AKI. menggunakan teknik pembelajaran
	mesin, meningkatkan ansambel pohon keputusan, untuk melatih
	alat prediksi AKI pada data retrospektif yang diambil dari lebih
_	1

dari 300.000 pertemuan pasien rawat inap. Data dikumpulkan dari bangsal rawat inap di Stanford Medical Center dan pasien unit perawatan intensif di Beth Israel Deaconess Medical Center. Pasien yang berusia lebih dari 18 tahun yang dirawat di rumah sakit berlangsung antara 5 dan 1000 jam dan yang memiliki setidaknya satu pengukuran detak jantung, laju pernapasan, suhu, kreatinin serum, dan Skala Koma Glasgow yang terdokumentasi. menguji kemampuan algoritme untuk mendeteksi AKI saat onset dan untuk memprediksi AKI 12, 24, 48, dan 72 jam sebelum onset. menguji deteksi dan prediksi AKI menggunakan Algoritma AKI National Health Service Inggris sebagai standar emas. Karena sifat retrospektif dari penelitian ini tidak dapat menarik kesimpulan tentang dampak prediksi algoritma terhadap hasil pasien dalam pengaturan klinis. Hasil eksperimen ini menunjukkan bahwa alat prediksi AKI berbasis pembelajaran mesin mungkin menawarkan kemampuan prognostik penting untuk menentukan pasien mana kemungkinan menderita AKI, yang berpotensi memungkinkan dokter untuk campur tangan sebelum kerusakan ginjal terjadi. Pendekatan machine learning yang dijelaskan dalam penelitian ini secara akurat memprediksi AKI tahap 2 atau tahap 3 hingga 72 jam masuk kemajuan onset pada saat dilatih dan diuji pada dua yang berbeda set data. Algoritme ini dapat meningkatkan deteksi AKI di pengaturan klinis, memungkinkan untuk intervensi lebih awal dan meningkatkan hasil pasien. Pendekatan machine learning yang dijelaskan di sini menghasilkan alat prediksi yang menunjukkan kinerja prediksi yang kuat, dalam hal AUROC, hingga 72 jam sebelum onset AKI tahap 2 atau tahap 3, di bawah kriteria NHS dan KDIGO untuk AKI. Dengan hanya membutuhkan 5 pengukuran ini untuk prediksi AKI, algoritma ini dirancang untuk dapat memprediksi risiko AKI pada sebagian besar populasi rumah sakit dalam pekerjaan klinis di masa depan. Berdasarkan hasil ini, percaya MLA ini dapat memberikan dokter kesempatan untuk meningkatkan hasil pasien melalui deteksi AKI lebih dini

dan intervensi berikutnya, yang mungkin termasuk resusitasi volume atau menghindari obat nefrotoksik untuk meminimalkan cedera ginjal lebih lanjut. 28 menekankan bahwa MLA berkinerja sama baiknya pada kumpulan data BIDMC dan Stanford. Data BIDMC hanya memasukkan pasien yang dirawat di ICU, sedangkan kumpulan data Stanford berisi informasi tentang rawat inap dari semua bangsal rumah sakit. Kedua kumpulan data ini mewakili pengaturan rumah sakit dengan demografi yang berbeda, frekuensi pengumpulan pengukuran pasien, tingkat penyediaan perawatan, dan tingkat keparahan penyakit pada pasien. Kemampuan prediksi algoritme di seluruh kumpulan data ini menunjukkan bahwa algoritme dapat mengidentifikasi pasien yang berisiko terkena AKI di berbagai pengaturan rumah sakit. Karena AKI adalah komplikasi umum dari rawat inap di rumah sakit dengan sifat yang beragam, 1 kemampuan ini sangat penting dalam alat prediksi AKI. Dalam studi sebelumnya, menilai MLA untuk deteksi sepsis di kedua pengaturan retrospektif29-31 dan prospektif. Dalam penelitian ini, terdapat penurunan yang signifikan secara statistik pada titik akhir primer rata-rata lama rawat di rumah sakit dan pada titik akhir sekunder dari angka kematian di rumah sakit. 32 Studi ini menunjukkan kelayakan penggunaan samping tempat tidur dari sistem prediksi berbasis pembelajaran mesin, serta potensi sistem tersebut untuk meningkatkan hasil pasien melalui deteksi dini dan lebih akurat dari kondisi pasien. Implementasi klinis di masa mendatang dari sistem yang dijelaskan dalam pekerjaan ini dimaksudkan untuk tidak mengganggu alur kerja klinis atau memerlukan pekerjaan tambahan dari penyedia perawatan. Metode pembelajaran mesin sebelumnya telah diterapkan pada deteksi AKI. Manfaat terukur dari fokus pada prediksi AKI dapat memungkinkan dokter untuk lebih cepat menentukan penyebab kemunduran pasien dan, dengan demikian, memberikan perawatan yang tepat secara lebih tepat waktu.

Tabel ini terdiri dari minimal 20 Jurnal

IV. ULASAN

Nama Jurnal	Ulasan Penelitian
Prediction of future gastric cancer risk using a machine learning algorithm and comprehensive medical check-up data: A casecontrol study.	Risiko kanker lambung di masa depan dengan memprediksi apakah ia akan didiagnosis menderita kanker lambung dalam 122 bulan ke depan. mengklasifikasikan peserta ke dalam kelompok kasus atau kelompok kontrol jika wasor kanker lambung tidak terdeteksi, masing-masing, selama periode 122 bulan. Dari peserta, 1.144 dipilih secara acak untuk digunakan dalam model klasifikasi pelatihan, dan 287 sisanya digunakan untuk mengevaluasi akurasi prediksi model yang dibangun. Kinerja klasifikasi diukur dengan kurva karakteristik operasi penerima dan area mereka di bawah nilai kurva.
Pathway analysis using XGBoost classification in Biomedical Data.	Makalah ini Singkatnya, metode klasifikasi berbasis jalur menggunakan algoritma XGBoost untuk menganalisis data ekspresi gen dijelaskan. Metode yang diusulkan mengidentifikasi jalur penting yang membedakan dua kasus yang diteliti, sementara itu mengisolasi jalur bawah tanah yang paling penting yang memainkan peran penting dalam seluruh topologi jalur, gangguan yang memunculkan penyakit yang diteliti.
Machine learning to predict rapid progression of carotid atherosclerosis in patients with impaired glucose tolerance	Perbandingan metode dan faktor dilakukan dengan menggunakan area di bawah analisis kurva karakteristik operasi penerima dan skor Brier. Hasil eksperimen menunjukkan bahwa metode pembelajaran yang diusulkan bekerja dengan baik dalam mengidentifikasi atau memprediksi RP. Di antara metode, kinerja Naïve Bayes adalah yang terbaik dibandingkan dengan perceptron multilayer dan hutan acak. Dengan berurusan dengan data multimodal, metode pembelajaran yang diusulkan menunjukkan efektivitas dalam memprediksi prediabetik yang berisiko untuk perkembangan aterosklerosis yang cepat.

MERCU BUANA

DAFTAR PUSTAKA

- [1] A. Shaham, G. Chodick, V. Shalev, and D. Yamin, "Personal and social patterns predict influenza vaccination decision," *BMC Public Health*, vol. 20, no. 1, pp. 1–12, 2020.
- [2] A. Dinh, S. Miertschin, A. Young, and S. D. Mohanty, "A data-driven approach to predicting diabetes and cardiovascular disease with machine learning," *BMC Med. Inform. Decis. Mak.*, vol. 19, no. 1, pp. 1–15, 2019.
- [3] W. Chang *et al.*, "A machine-learning-based prediction method for hypertension outcomes based on medical data," *Diagnostics*, vol. 9, no. 4, 2019.
- [4] D. J. Albers, N. Elhadad, J. Claassen, R. Perotte, A. Goldstein, and G. Hripcsak, "Estimating summary statistics for electronic health record laboratory data for use in high-throughput phenotyping algorithms," *J. Biomed. Inform.*, vol. 78, no. December 2017, pp. 87–101, 2018.
- [5] G. N. Dimitrakopoulos, A. G. Vrahatis, K. Sgarbas, and V. Plagianakos, "Pathway analysis using xgboost classification in biomedical data," *ACM Int. Conf. Proceeding Ser.*, pp. 1–6, 2018.
- [6] S. Ramani, M. Sivakami, and L. Gilson, "How context affects implementation of the Primary Health Care approach: an analysis of what happened to primary health centres in India," *BMJ Glob. Heal.*, vol. 3, no. Suppl 3, p. e001381, 2019.
- [7] R. J. Ellis, Z. Wang, N. Genes, and A. Ma'Ayan, "Predicting opioid dependence from electronic health records with machine learning," *BioData Min.*, vol. 12, no. 1, pp. 1–19, 2019.
- [8] X. Hu *et al.*, "Machine learning to predict rapid progression of carotid atherosclerosis in patients with impaired glucose tolerance," *Eurasip J. Bioinforma. Syst. Biol.*, vol. 2016, no. 1, 2016.
- [9] C. A. Hu *et al.*, "Using a machine learning approach to predict mortality in critically ill influenza patients: A cross-sectional retrospective multicentre study in Taiwan," *BMJ Open*, vol. 10, no. 2, pp. 1–10, 2020.
- [10] S. Jaya and M. Latha, "Diagnosis of cervical cancer using CLAHE and SGLDM on RGB pap smear images through ANN," *Int. J. Innov. Technol. Explor. Eng.*, vol. 9, no. 1, pp. 530–534, 2019.
- [11] D. S. Kermany *et al.*, "Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning," *Cell*, vol. 172, no. 5, pp. 1122-1131.e9, 2018.
- [12] M. Moscatelli *et al.*, "An infrastructure for precision medicine through analysis of big data," *BMC Bioinformatics*, vol. 19, no. Suppl 10, 2018.
- [13] P. Kumar, A. Nestsiarovich, S. J. Nelson, B. Kerner, D. J. Perkins, and C. G. Lambert, "Imputation and characterization of uncoded self-harm in major mental illness using machine learning," *J. Am. Med. Informatics Assoc.*, vol. 27, no. 1, pp. 136–146, 2020.
- [14] L. Buitinck *et al.*, "API design for machine learning software: experiences from the scikit-learn project," no. July 2014, 2013.
- [15] J. Sandino, G. Pegg, F. Gonzalez, and G. Smith, "Aerial mapping of forests affected by pathogens using UAVs, hyperspectral sensors, and artificial intelligence," *Sensors* (*Switzerland*), vol. 18, no. 4, pp. 1–17, 2018.
- [16] D. Stamate *et al.*, "A metabolite-based machine learning approach to diagnose Alzheimer-type dementia in blood: Results from the European Medical Information Framework for Alzheimer disease biomarker discovery cohort," *Alzheimer's Dement. Transl. Res. Clin. Interv.*, vol. 5, pp. 933–938, 2019.
- [17] J. Taninaga et al., "Prediction of future gastric cancer risk using a machine learning

- algorithm and comprehensive medical check-up data: A case-control study," *Sci. Rep.*, vol. 9, no. 1, pp. 1–9, 2019.
- [18] R. A. Taylor, C. L. Moore, K. H. Cheung, and C. Brandt, "Predicting urinary tract infections in the emergency department with machine learning," *PLoS One*, vol. 13, no. 3, pp. 1–15, 2018.
- [19] B. Farran, A. M. Channanath, K. Behbehani, and T. A. Thanaraj, "Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: Machine-learning algorithms and validation using national health data from Kuwait-a cohort study," *BMJ Open*, vol. 3, no. 5, pp. 1–10, 2013.
- [20] H. Mohamadlou *et al.*, "Prediction of Acute Kidney Injury With a Machine Learning Algorithm Using Electronic Health Record Data," *Can. J. Kidney Heal. Dis.*, vol. 5, 2018.

LAMPIRAN

SURAT PERNYATAAN

Yang bertanda tangan di bawah ini, pemegang hak cipta:

Nama 1 Muhamad Iqbal 2 DR.Mujiono Sadikin, MT, CISA, CGEIT

Kewarganegaraan Indonesia

Alamat Jakarta Barat, DKI Jakarta, Indonesia

Dengan ini menyatakan bahwa:

Karya Cipta yang saya mohonkan:
 Berupa : Jurnal Ilmiah

Berjudul Analisa Data Rekam Medis Menggunakan Teknik Data Mining Association

Rules Dengan Algoritma Clustering.

 Tidak meniru dan tidak sama secara esensial dengan Karya Cipta milik pihak lain atau obyek kekayaan intelektual lainnya sebagaimana dimaksud dalam Pasal 68 ayat (2);

- Bukan merupakan Ekspresi Budaya Tradisional sebagaimana dimaksud dalam Pasal 38;
- Bukan merupakan Ciptaan yang tidak diketahui penciptanya sebagaimana dimaksud dalam Pasal 39;
- Bukan merupakan hasil karya yang tidak dilindungi Hak Cipta sebagaimana dimaksud dalam Pasal 41
 dan 42
- Bukan merupakan Ciptaan seni lukis yang berupa logo atau tanda pembeda yang digunakan sebagai merek dalam perdagangan barang/jasa atau digunakan sebagai lambang organisasi, badan usaha, atau badan hukum sebagaimana dimaksud dalam Pasal 65 dan;
- Bukan merupakan Ciptaan yang melanggar norma agama, norma susila, ketertiban umum, pertahanan dan keamanan negara atau melanggar peraturan perundang-undangan sebagaimana dimaksud dalam Pasal 74 ayat (1) huruf d Undang-Undang Nomor 28 Tahun 2014 tentang Hak Cipta.
- Sebagai pemohon mempunyai kewajiban untuk menyimpan asli contoh ciptaan yang dimohonkan dan harus memberikan apabila dibutuhkan untuk kepentingan penyelesaian sengketa perdata maupun pidana sesuai dengan ketentuan perundang-undangan.
- Karya Cipta yang saya mohonkan pada Angka 1 tersebut di atas tidak pernah dan tidak sedang dalam sengketa pidana dan/atau perdata di Pengadilan.
- Dalam hal ketentuan sebagaimana dimaksud dalam Angka 1 dan Angka 3 tersebut di atas saya / kami langgar, maka saya / kami bersedia secara sukarela bahwa:
 - a. permohonan karya cipta yang saya ajukan dianggap ditarik kembali; atau
 - b. Karya Cipta yang telah terdaftar dalam Daftar Umum Ciptaan Direktorat Hak Cipta, Direktorat Jenderal Hak Kekayaan Intelektual, Kementerian Hukum Dan Hak Asasi Manusia R.I dihapuskan sesuai dengan ketentuan perundang-undangan yang berlaku.
 - c. Dalam hal kepemilikan Hak Cipta yang dimohonkan secara elektronik sedang dalam berperkara dan/atau sedang dalam gugatan di Pengadilan maka status kepemilikan surat pencatatan elektronik tersebut ditangguhkan menunggu putusan Pengadilan yang berkekuatan hukum tetap.

Demikian Surat pernyataan ini saya/kami buat dengan sebenarnya dan untuk dipergunakan sebagimana mestinya.

Jakarta , 26 Agustus 2022

(Muhamad Igbal)

* Semua pemegang hak cipta agar menandatangani di atas materai