BAGIAN 4 PERANCANGAN

4.1. Skema dan Gambar Kerja

4.1.1. Existing Configuration

Bagian ini menjelaskan mengenai topologi yang sudah ada sebelumnya serta konfigurasi yang digunakan dalam interkoneksi antar *HUB* dan *SPOKE(s)*.

Gambar 7. Topologi jaringan existing.

Saat ini, PT.Cahaya Kreatif Digital menggunakan konfigurasi OSPF (Open Shorten Path First) untuk menghubungkan antar kantor.

4.1.2. Topologi DMVPN

Pada bagian ini, topologi serta konfigurasi akan dijelaskan. Berikut ini topologi yang digunakan pada percobaan konfigurasi*DMVPN* menggunakan *IPSec* dan *Routing EIGRP* pada PT. Cahaya Kreatif Digital.

Gambar 8. Topologi jaringan DMVPN.

Gambar 9. Topologi jaringan pada GNS3.

Pada topologi jaringan di atas tersedia 3 buah router dan masing- masing diberi nama R1_HUB, ISP, R2_SPOKE dan R3_SPOKE. R1_HUB adalah *router hub* yang berfungsi sebagai_penghubung antara spoke dan dihubungkan dengan ISP. ISP disini dianalogikan sebagai *ISP (Internet Service Provider)*.

R2_SPOKE dihubungkan dengan ISP agar dapat berkomunikasi dengan R1_HUB maupun R3_SPOKE. R3_SPOKE dihubungkan dengan *router* ISP.

Tunneling proses terjadi melalui *router* ISP, antar router HUB dan SPOKE. Proses *tunneling* ini membuat transfer data menjadi lebih singkat sebagai contoh apabila R1_HUB ingin mengirimkan data menuju R2_SPOKE, seolah-olah antara kedua *router* ini memiliki suatu jalur khusus seperti terowongan yang menghubungkan dua titik. Contoh lainnya, apabila R2_SPOKE Mengirimkan data menuju R3_SPOKE ataupun sebaliknya kedua *router* tersebut tidak R1_HUB untuk berkomunikasi, ke kedua *router* ini memiliki terowongan untuk mentransfer data nya sendiri sehingga proses komunikasi atau transfer data menjadi lebih singkat dan dapat mengurangi beban *router* R1_HUB.

4.2. Konfigurasi Perangkat

Pastikan IOS yang terdapat di dalam keempat *router* tersebut mendukung untuk fitur *DMVPN*. Sebagai contoh apabila kita menggunakan *router* cisco tipe 3725 dan meng-*upgrade* IOS tersebut dengan *module* atau *license boot module security9*.

Setelah perangkat dan bahan disiapkan dan sudah dipasang sesuai topologi langkah selanjutnya yaitu proses konfigurasi tiap *router* dengan memberikan *IP address* dan memasukkan *command-command* terkait. Berikut adalah konfigurasi yang perlu dilakukan untuk menerapkan konfigurasi *DMVPN menggunakan IPSec dan EIGRP*:

4.2.1. Pilih Router dan IOS yang dapat mendukung teknologi DMVPN dan EIGRP

Router yang dapat melakukan ini adalah *router* dengan IOS diatas versi duabelas (12) seperti *router* Cisco 881, 1905, 2851, 3725, 7200 dan sebagainya. Apabila, IOS dibawah versi tersebut maka, harus di *upgrade* terlebih dahulu. Berikut ini langkah-langkah meng-*upgrade* module:

- Buka CLI pada router.
- Masukan konfigurasi seperti berikut:

 R1_HUB#configuration terminal

 R1_HUB(config)# license boot module c2900 technology-package securityk9

 ACCEPT? [yes/no]: yes

 R1_HUB (config)# do copy run start

 Destination filename [startup-config]?

 Building configuration...

 [OK]

 R1_HUB # Reload !untuk me-restart router

 Tabel 4. Upgrade module

4.2.2. Konfigurasi IP address sesuai topologi

Setelah mendapatkan *router* dan IOS yang sesuai dan sudah diubah *hostname*-nya maka langkah selanjutnya adalah memberikan *IP address* setiap port sesuai dengan topologi yang ada.

Router#configure terminal

Router(config)#hostname R1_HUB *!Untuk menggubah hostname*

R1_HUB(config)#int FastEthernet 0/0 *!masuk kedalam interface Fa0/0*

R1_HUB(config-if)#ip address 202.1.1.2 255.255.255.252

R1_HUB(config-if)#speed 100

R1_HUB(config-if)#duplex full

R1_HUB(config-if)#no shutdown *!untuk mengaktifkan interface fa0/0*

R1_HUB(config)#interface loopback0 !mengaktifkan interface Loopback 0

R1_HUB(config-if)#ip address 192.168.1.1 255.255.255.0

R1_HUB(config-if)#no shutdown

R1_HUB(config-if)#exit

R1_HUB(config)#crypto isakmp policy 1 !DMVPN Phase 1

R1_HUB(config-isakmp)#authentication pre-share

R1_HUB(config-isakmp)#exit

R1_HUB(config)#crypto isakmp key Ckd123! address 0.0.0.0 *!harus sama antara hub dan spoke*

R1_HUB(config)#crypto ipsec transform-set TSET esp-des esp-md5-hmac **!DMVPN phase 2**

R1_HUB(cfg-crypto-trans)#mode tunnel

R1_HUB(cfg-crypto-trans)#exit

R1_HUB(config)#crypto ipsec profile VPNPROF

R1_HUB(ipsec-profile)#set transform-set TSET

R1_HUB(ipsec-profile)#exit

R1_HUB(config)#interface Tunnel 0 !mengkatifkan interface tunnel 0

R1_HUB(config-if)#ip address 10.10.10.1 255.255.255.0

R1_HUB(config-if)#no ip next-hop-self eigrp 1 *!agar router tidak menjadi next hop*

R1_HUB(config-if)#ip nhrp map multicast dynamic

R1_HUB(config-if)#ip nhrp network-id 1 !harus sama antara hub dan spoke

R1_HUB(config-if)#no ip split-horizon eigrp 1

R1_HUB(config-if)#tunnel source FastEthernet0/0

R1_HUB(config-if)#tunnel mode gre multipoint

R1_HUB(config-if)#tunnel key 7777 !harus sama antara hub dan spoke

Tabel 5. Konfigurasi R1_HUB

Pada konfigurasi R1_HUB, terdapat inputan *crypto isakmp policy 1* Ini adalah proses input untuk mengaktifkan DMVPN fase pertama. Angka 1 setelah *policy* dapat diubah dengan angka berapa saja tapi perlu diingat angka ini menjadi titik acuan untuk mengkonfigurasi di *router* lainnya. Hal yang perlu diperhatikan selanjutnya adalah *ip nhrp network-id* 1, nhrp harus sama antara semua perangkat router. Nhrp adalah Next-Hop Resolution Protocol. <u>crypto isakmp key Ckd123!</u> address 0.0.0.0, key ini adalah *password* enkripsi, sehingga perangkat dapat mengenkripsi dan dekripsi pesan dengan *password* yang telah ditentukan. Router#configure terminal Router(config)#hostname ISP ISP(config)#interface fastEthernet 0/0 ISP(config-if)#ip address 202.1.1.1 255.255.255.252 ISP(config-if)#speed 100 ISP(config-if)#duplex full ISP(config-if)#no shutdown ISP(config)#interface fastEthernet 1/0 ISP(config-if)#ip address 202.1.2.1 255.255.255.252 ISP(config-if)#speed 100 ISP(config-if)#duplex full ISP(config-if)#no shutdown ISP(config)#interface fastEthernet 2/0 ISP(config-if)#ip address 202.1.3.1 255.255.255.252 ISP(config-if)#speed 100 ISP(config-if)#duplex full ISP(config-if)#no shutdown ISP(config-if)#exit ISP#write

Tabel 6. Konfigurasi ISP

Router#configure terminal

Router(config)#hostname R2 SPOKE

R2 SPOKE(config)#interface fastEthernet 0/0

R2_SPOKE(config-if)#ip address 202.1.2.2 255.255.255.252

- R2_SPOKE(config-if)#speed 100
- R2_SPOKE(config-if)#duplex full
- R2_SPOKE(config-if)#no shutdown
- R2_SPOKE(config)#crypto isakmp policy 1
- R2_SPOKE(config-isakmp)#authentication pre-share
- R2_SPOKE(config-isakmp)#exit
- R2_SPOKE(config)#crypto isakmp key Ckd123! address 0.0.0.0

R2_SPOKE(config)#crypto ipsec transform-set TSET esp-des esp-md5hmac

R2_SPOKE(cfg-crypto-trans)#mode tunnel

R2_SPOKE(cfg-crypto-trans)#exit

R2_SPOKE(config)#crypto ipsec profile VPNPROF

R2_SPOKE(ipsec-profile)#set transform-set TSET

R2_SPOKE(ipsec-profile)#exit

R2_SPOKE(config)#interface Tunnel 0

R2_SPOKE(config-if)#ip address 10.10.10.2 255.255.255.0

R2_SPOKE(config-if)#ip nhrp map 10.10.10.1 201.1.1.1

R2_SPOKE(config-if)#ip nhrp map multicast 201.1.1.1

R2_SPOKE(config-if)#ip nhrp network-id 1

R2_SPOKE(config-if)#ip nhrp nhs 10.10.10.1

R2_SPOKE(config-if)#tunnel source FastEthernet0/0

R2_SPOKE(config-if)#tunnel mode gre multipoint

R2_SPOKE(config-if)#tunnel key 7777

R2_SPOKE(config-if)#tunnel protection ipsec profile VPNPROF

R2_SPOKE(config)#router eigrp 1

R2_SPOKE(config-router)#network 192.168.2.0

R2_SPOKE(config-router)#network 10.0.0.0

R2_SPOKE(config-router)#exit

R2_SPOKE(config)#ip route 0.0.0.0 0.0.0.0 202.1.1.:

R2 SPOKE(config)#exit

R2_SPOKE#write

Tabel 7. Konfigurasi R2_SPOKE

Router#configure terminal

Router(config)#hostname R3_SPOKE

R3_SPOKE(config)#interface fastEthernet 0/0

R3_SPOKE(config-if)#ip address 202.1.3.2 255.255.255.252

R3_SPOKE(config-if)#speed 100

R3_SPOKE(config-if)#duplex full

R3_SPOKE(config-if)#no shutdown

R3_SPOKE(config)#crypto isakmp policy 1

R3_SPOKE(config-isakmp)#authentication pre-share

R3_SPOKE(config-isakmp)#exit

R3_SPOKE(config)#crypto isakmp key Ckd123! address 0.0.0.0

R3_SPOKE(config)#crypto ipsec transform-set TSET esp-des esp-md5hmac

nmac

R3_SPOKE(cfg-crypto-trans)#mode tunnel

R3_SPOKE(cfg-crypto-trans)#exit

R3_SPOKE(config)#crypto ipsec profile VPNPROF

R3_SPOKE(config-profile)#set transform-set TSET

R3_SPOKE(config-profile)#exit

MERCU BUANA

R3_SPOKE(config)#interface Tunnel 0

_SPOKE(config-if)#ip address 10.10.10.3 255.255.255.0

R3 SPOKE(config-if)#ip nhrp map 10.10.10.1 202.1.1.1

R3_SPOKE(config-if)#ip nhrp map multicast 202.1.1.1

R3 SPOKE(config-if)#ip nhrp network-id 1

R3_SPOKE(config-if)#ip nhrp nhs 10.10.10.1

R3_SPOKE(config-if)#tunnel source FastEthernet0/0

R3_SPOKE(config-if)#tunnel mode gre multipoint

R3_SPOKE(config-if)#tunnel key 7777

R3_SPOKE(config-if)#tunnel protection ipsec profile VPNPROF

R3_SPOKE(config)#router eigrp 1

R3_SPOKE(config-router)#network 10.0.0.0

R3_SPOKE(config-router)#network 192.168.3.0

R3_SPOKE(config-router)#exit

R3_SPOKE(config)#ip route 0.0.0.0 0.0.0.0 202.1.1.9

R3_SPOKE(config)#exit

R3_SPOKE#write

Tabel 8. Konfigurasi R3_SPOKE

4.3. Verifikasi Hasil

Verifikasi hasil merupakan proses pengecekan konfigurasi yang telah kita masukkan, verifikasi tersebut berupa *show command* terkait dan dengan melakukan *test ping, traceroute* dan *debug*. Tujuan verifikasi hasil ini adalah untuk mengetahui apakah konfigurasi yang kita lakukan sudah berhasil seperti rencana semula atau belum. Berikut ini adalah hasil verifikasi DMVPN dari R1_HUB, ISP, R2_SPOKE, R3_SPOKE.

4.3.1. Verifikasi Hasil R1_HUB

R1 HUB#show dmvpn Legend: Attrb --> S - Static, D - Dynamic, I - Incomplete N - NATed, L - Local, X - No Socket # Ent --> Number of NHRP entries with same NBMA peer Tunnel0, Type:Hub, NHRP Peers:2, # Ent Peer NBMA Addr Peer Tunnel Add State UpDn Tm Attrb 1 202.1.1.6 10.10.10.2 UP never D 1 202.1.1.10 10.10.10.3 UP never D

Tabel 9. Hasil test R1_HUB

Gambar 10. Show dmvpn R1_HUB

0.8-8	administrator — R1_HUB — telnet localhost 5000 — 80×24
[R1_HUB#ping 1 Type escape s	10.10.10.3 repeat 1000 size 1000 sequence to abort.
Sending 1000,	, 1000-byte ICMP Echos to 10.10.10.3, timeout is 2 seconds:
111111111111111	
11111111111111	
11111111111111	
111111111111111	
11111111111111	
11111111111111	
пошши	
1111111	
11111111111111	
1111111111	
11111111111111	
11111	
111111111111111	
Success rate	is 90 percent (901/1000), round-trip min/avg/max = 16/65/1716 ms
No num strong	
Legend: Attrh	n> S - Static, D - Dynamic, T - Incomplete
N - N	NATed. L - Local. X - No Socket
# Ent	t> Number of NHRP entries with same NBMA peer

Gambar 11. Hasil ping menuju R3 SPOKE

Pada gambar 4.4. adalah hasil *ping* sebanyak 1000 kali dengan bobot *package* 1000, tingkat keberhasilannya adalah 90%.

Gambar 12. Hasil traceroute ke kedua SPOKE

Pada gambar diatas menjelaskan mengeenai next-hop atau jalur yang dilalui oleh paket dari *router source* menuju *network destination*

4.3.2. Verifikasi Hasil R2_SPOKE

R2_SPOKE#show dmvpn

Legend: Attrb --> S - Static, D - Dynamic, I - Incomplete

N - NATed, L - Local, X - No Socket

Ent --> Number of NHRP entries with same NBMA peer

Tunnel0, Type:Spoke, NHRP Peers:1,

Ent Peer NBMA Addr Peer Tunnel Add State UpDn Tm Attrb

1 202.1.1.1 10.10.10.1 UP 00:03:11 S

Tabel 10. Hasil test R2_SPOKE

Gambar 13. Show dmvpn pada R2 SPOKE

🗢 🚳 👘 administrator —	R2_SPOKE - telnet localhost 500.	2 — 80×24
		-
1 202.1.1.2	10.10.10.1 UP 01:45:45	5
1 202.1.3.2	10.10.10.3 UP 01:29:22	0
R2_SPOKE#ping 10.10.10.1 rep	eat 1000 size 1000	
Type escape sequence to abor	t.	
Sending 1000, 1000-byte ICMP	Echos to 10.10.10.1, timeout :	is 2 seconds:
	111111111111111111111111111111111111111	
111111111111111111111111111111111111111	111111111111111111111111111111111111111	
111111111111111111111111111111111111111	11	
111111111111111111111111111111111111111		
111111111111111111111111111111111111111		11
111111111111111111111111111111111111111		11111111111
11111	111111111111111111111111111111111111111	
1111111111111111111111111		
111111111111111111111111111111111111111	11111111111	
111111111111111111111111111111111111111	11111111111111111111111111111111111111	111111111111
111111111111111		
111111111111111111111111111111111111111	11	
111111111111111111111111111111111111111	11111111111111111	
1111111111111111111		
Success rate is 97 percent (971/1000), round-trip min/avg/m	nax = 16/47/1784 ms
R2_SPOKE#		

Gambar 14. Hasil ping menuju R1_HUB

4.3.3. Verifikasi Hasil R3_SPOKE

R3_SPOKE#show dmvpn

Legend: Attrb --> S - Static, D - Dynamic, I - Incomplete

N - NATed, L - Local, X - No Socket

Ent --> Number of NHRP entries with same NBMA peer

Tunnel0, Type:Spoke, NHRP Peers:1,

Ent Peer NBMA Addr Peer Tunnel Add State UpDn Tm Attrb

1 202.1.1.1 10.10.10.1 UP 00:03:41 S

Tabel 11. Hasil test R3_SPOKE

Gambar 16. Show dmvpn pada R3 SPOKE

0.8.6	administrator — R3_SPOKE — telnet localhost 5003 — 80×24	
R3_SPOK	E#ping 10.10.10.1 repeat 1000 size 1000	
Type eso	cape sequence to abort.	
Sending	1000, 1000-byte ICMP Echos to 10.10.10.1, timeout is 2 seconds:	
.1111111	***************************************	
THILL		
111	11111111111111111111111111111111111	
1111111	111111	
THEFT		
111111.		
1111111		
	11111111111111111111111111111111111	
TITTT	······································	
THULL	1111111111111111111111111111111111	
1111111		
111		
1111111	***************************************	
THILL		
111		
Success	rate is 88 percent (889/1000), round-trip min/avg/max = 16/69/1652 ms	
R3_SPOK	E#sh dmv	
R3_SPOK	E#sh dmvpn	
Legend:	Attrb> S - Static, D - Dynamic, I - Incomplete	
	N - NATed, L - Local, X - No Socket	
	# Ent> Number of NHRP entries with same NBMA peer	
· · · · · · · · · · · · · · · · · · ·		

Gambar 17. Hasil ping menuju R1_HUB

Gambar 18. Hasil traceroute menuju R1 dan R2

Seperti yang kita lihat pada tabel R1_HUB, R2_SPOKE dan R3_SPOKE bahwa status DMVPN sudah UP. Pada ketiga *router* tersebut *Peer NBMA* menunjukkan *IP Public* dari setiap *router* dan *Peer Tunnel* adalah *IP Private* yang dimiliki oleh setiap router. Jadi konsepnya adalah sebelum melalui *IP Private* setiap *router* akan menanyakan *IP Public*-nya kepada HUB. Pada HUB ia akan menyimpan *data routing* secara dinamis kita bisa mengetahuinya dari *Attrb*, hub akan menyimpan semua *IP Private* dan *IP Public* dari setiap spoke, sedangkan pada spoke kita hanya mengetahui *IP Private* dan *IP Public* dari hub.

4.4. Pengujian

Pada bagian ini, menjelaskan mengenai konfigurasi DMVPN. Pengujian ini menghasilkan *ping, jitter, package loss*, dan *next-hope* yang dilalui oleh paket data.

4.4.1. Hasil Throughput

Hasil *throughput* menunjukan kecepatan data di transfer sesungguhnya. Throughput adalah jumlah total kedatangan packet yang berhasil diamati pada tujuan selama interval tertentu.

Application:	Dumpcap (Wir	eshark) 3.2.6 (v3	.2.6-0-g4f9257	(bBccc)
Interfaces				
Interface	Dropped packets	Capture filter	Link type	Packet size limit
	Unknown	none	Ethernet	65535 bytes
Statistics				
Measurement Packets Time span, s Average pps Average packet B	Captured 9446 8531.379 1.1 size, 899	Displa 9446 8531. 1.1 899	yed (100.0%) 379	
Bytes	8493897	8493	897 (100.0%)	0
Average bytes/s Average bits/s	995 7964	995 7964		
apture file com	ments			

Gambar 19. Throughput dari R1 to ISP

OS:	Mac OS X 10 15	54 build	19E287	(Darwin 194)	01
Application:	Dumpcap (Wire	eshark) 3	.2.6 (v3.	2.6-0-g4f925	57fb8ccc)
Interfaces					
Interface	Dropped packets	Captur	e filter	Link type	Packet size limi
7	Unknown	none		Ethernet	65535 bytes
Statistics					
Measurement	Captured		Displa	/ed	Marked
Packets	5409		5409	100.0%)	÷
Time span, s	8521.468		8521.4	68	=
Average pps	0.6		0.6		-
Average packet: B	size, 799		799		-
Bytes	4322453		43224	53 (100.0%)	0
Average bytes/s	507		507		-
	4057		4057		<u> </u>

Gambar 20. Throughput dari R2 to ISP

OS: N	Mac OS X 10.15.4, build 19E287 (Darwin 19.4.0) Dumpcap (Wireshark) 3.2.6 (v3.2.6-0-04f9257tb8ccc)					
nterfaces	Jumpcap (with	2511d1 K) - 3-2.	0 (13.2.0-	0-94192371	66CCC)	
Interface C	propped	Capture	ilter Li	ok type	Packet size limit	
- î	Inknown	none	Et	hernet	65535 bytes	
Statistics						
Measurement Packets Time span, s Average pps Average packet siz B	Captured 5416 8505.766 0.6 ce, 798	I	Displayed 5416 (100, 8505,766 0,6 798	0%) - - -		
Bytes	4324670		4324670 (100.0%) ()	
Average bytes/s Average bits/s	508 4067		508 4067	-		
apture file comme	ints					

Gambar 21. Throughput dari R3 to ISP

Gambar 22. Perbandingan hasil throughput.

Dari percobaan diatas, dapat disimpulkan bahwa penggunaan DMVPN lebih effiesien dalam proses transfer data. *Throughput* DMVPN secara rata-rata memiliki kecepatan 1,01Mbps sedangkan OSPF memiliki kecepatan rata-rata 0,26Mbps. DMVPN lebih cepat dan effiesien sekitar 74.17%.

MERCU BUANA

4.4.2. Hasil Jitter

Jitter dapat didefinisikan sebagai variasi-variasi *delay* antar *block-block* yang berutan. Besarnya nilai jitter sanga berpengaruh oleh variasi-variasi beban trafik dan besarnya tumpukan antar *packet*.

Gambar 23. Perbandingan hasil jitter

Pada data diatas, *jitter* pada DMVPN lebih besar dibanding OSPF dengan perbedaan rata-rata 0,68Mbps.

MERCU BUAN